

Richtungsweisende Linear-Komponenten...

Hier einige Anwendungsbereiche der vielseitigen Linear-Rundführungen:

- Montage- und Zuführungsmaschinen
- Lebensmittelindustrie
- Graphische Maschinen
- Verpackungsmaschinen
- Werkzeugmaschinen
- Medizintechnik
- Optische Scanner
- Roboter
- Textilindustrie
- Semiconducter Industrie
- Sortiermaschinen
- Automobilindustrie

...gefertigt auf hochmodernen CNC-Maschinen.

Linearlager und -einheiten haben in der heutigen Zeit einen großen Stellenwert eingenommen. Um Konstruktionen wirtschaftlich sinnvoll zu gestalten, werden in der Zukunft mehr Linearsysteme zum Einsatz kommen: gefragt ist das technisch Nötige, nicht das technisch Mögliche.

Die in diesem Katalog aufgeführten Linearkomponenten sind technisch hochpräzise Produkte, die sich in Automation und Handlingstechnologie bewährt haben.

Der Katalog umfaßt fünf Teilbereiche der Lineartechnik mit den wichtigsten technischen Daten.

Für Sonderbauteile oder das weitere Lineartechnikprogramm fordern Sie bitte die technischen Unterlagen bei uns an. Gern stellen wir Ihnen jederzeit unser Know-How, stellvertretend durch unsere Außendienstingenieure, zur Verfügung.

Bitte fordern Sie uns.

Lineartechnik ΤÜ Technische Übersicht 4 – 17 мо 18 – 19 Montage BS Bestellschlüssel 20 Kapitel I Linearkugellager KH Linearkugelhülse 21 **LME** Linearkugellager 22 SDE Linearkugellager 23 LMEF/K Linearkugellager Rundflansch 24 LMEF/K-L Linearkugellager Rundflansch Tandem, verchromte Ausführung 25 **LMES**® Linearkugellager mit Winkelfehlerausgleich 26 SSE 27 Linearkugellager mit Winkelfehlerausgleich, hohe Tragzahl **FMT** Kompakt-Lineargleitlager 28 FM 29 Lineargleitlager Kapitel II Lineargehäuse-Einheiten AGC geschlossen kompakt 30 TAGC Tandemausführung geschlossen kompakt 31 ALGS Stehlager geschlossen 32 ALGS-OP Stehlager offen 33 AG Standard geschlossen 34 AG-AJ geschlossen, Radialluft einstellbar 35 AG-OP offen 36 AG-OPAJ offen, Radialluft einstellbar 37 AGS seitlich offen 38 AGS-AJ seitlich offen, Radialluft einstellbar 39 TAG Tandem geschlossen 40 TAG-AJ Tandem geschlossen, Radialluft einstellbar 41 TAG-OP Tandem offen 42 TAG-OPAJ Tandem offen, Radialluft einstellbar 43 **TAGI** Tandem geschlossen, vier Befestigungsanschlüsse 44 Tandem offen, vier Befestigungsanschlüsse **TAGI-OP** 45 QAG Quadro geschlossen 46 **QAG-OP** Quadro offen 47 **FAG** Flansch 48

FTAG

DLR

Tandem - Flansch

Dichtringe

49

50

Kapitel	III Linear g	gehäuse-Einh	eiten Kugelgraphitguß/Al-Druckguß	
	-			
	(2)	GG	geschlossen	51
	-	GG-AJ	geschlossen, Radialluft einstellbar	52
		GG-OP	offen	<i>53</i>
		GG-OPAJ	offen, Radialluft einstellbar	54
	9	FGG	Flansch	55
	600	MAG	geschlossen	56
	-	MAG-AJ	geschlossen, Radialluft einstellbar	57
	m.	MAG-OPAJ	offen, Radialluft einstellbar	58
Kapitel	IV Linear b	oauelemente	Wellenunterstützungen/Wellenböcke	
	100			
	-	WUF	flach	59
		WUFD	flach doppeltes Bohrbild	60
		WUN	niedrig	61
	22	WUS	niedrig - Stahl	62
ä	*******	WUM	mittel	63
		WUV	mittel	64
		WUH	hoch	65
F		TS	Tragschienen	66
1	£ 600	TAA	Traverse A	67
		TAB	Traverse B	68
	6	WBC	Wellenbock kompakt	69
	-	WBA	Wellenbock	70
	10	WBAS	Standard - Wellenbock	71
	5	WBS	Stahl - Wellenbock	72
	Elmo	FWBA	Flansch - Wellenbock	73
	E 30	FWBG	Flansch - Wellenbock Grauguß	74
	-	π	Toleranztabelle	75
Kapitel	V Präzisi	onsführungs	wellen	
•		PFWU	Welle unbearbeitet	76
	-	PFWB	Welle bearbeitet	77
		WV/WV1	Präzisionsführungswellen	78
		WR/WH	Präzisionsführungswellen	79
		WL	Weiteres Linearprogramm	80

KH Linear Kugelhülsen

Der Außenmantel besteht aus Stahlblech, der Käfig aus Kunststoff.

Die Kugeln sind Grade 10. Die Kugelhülsen sind einseitig und beidseitig gedichtet erhältlich

LME / SDE Standard Linearkugellager

Der Außenmantel der Standardserie besteht aus Wälzlagerstahl. Für den Käfig wird je nach Ausführung Kunststoff oder Wälzlagerstahl verwendet.

Die Kugeln sind Grade 10, die Abstreifdichtung ist auf den Deckring aufvulkanisiert.

LMEF / LMEF-L / LMEK / LMEK-L

Flansch Linearkugellager einfach und doppelt

Der Außenmantel der Standardserie besteht aus Wälzlagerstahl. Für den Käfig wird Kunststoff verwendet. Die Kugeln sind Grade 10, die Abstreifdichtung ist auf den Deckring aufvulkanisiert.

LMES Linearkugellager mit Winkelfehlerausgleich

Diese Lager bestehen aus einem hochpräzisen gespritzten Kunststoffträger, in dem die aus Wälzlagerstahl eingeklipsten Laufbahnplatten befestigt sind. Der Kunststoffträger dient gleichzeitig als Rücklauf und Dichtungsaufnahme. Die Dichtung besteht
aus einem Spezial-Polyamide-Material mit einem geringen Reibungskoeffizienten. Die Dichtung ist im Lager eingeklipst. Die
Lager sind auch in korrosionsbeständiger Ausführung (CR) lieferbar, wobei die Kugeln aus Edelstahl und die Andruckplatten in
verchromter Ausführung lieferbar sind.

Linearkugellager sind in folgenden Ausführungen erhältlich:
geschlossen
(geschlossen, Radialluft einstellbar)
offen

Vorteile

SSE Super-Smart-Linearkugellager™

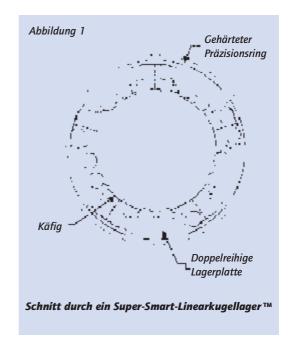
- · Die sechsfache Tragfähigkeit oder die 216-fache Weglebensdauer eines konventionellen Linearkugellagers.
- · Die doppelte Tragfähigkeit oder die achtfache Weglebensdauer eines Standard-Linearkugellagers.
- · Eine universelle Selbsteinstellung, die Fluchtfehler von Gehäusebohrungen oder Wellendurchbiegung ausgleicht, die Lastverteilung zwischen den Laufbahnen optimiert und eine gleichmäßige Belastung aller Kugeln über die gesamte Lagerlänge garantiert. Montagezeit und Kosten werden auf ein Minimum reduziert während Lagerleistung und - lebensdauer maximiert werden.
- · Eine technologisch fortschrittliche Konstruktion, die eine Montage des Lagers auch bei leicht unrunden Gehäusen zuläßt.

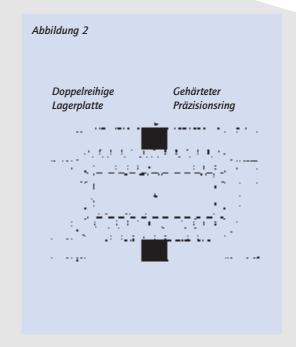
- Eine 400% längere Lebensdauer und minimale Maschinenausfallzeiten beim Ersetzen von konventionellen Linearlagern oder Standard-Linearkugellagern.
- Der PowerRail-Vorteil macht in Kombination mit den universell selbstfluchtenden Lagerplatten Lastminderungsfaktoren überflüssig, die gewöhnlich für Linearführungen erforderlich sind.
- · Einen Reibungskoeffizienten von nur 0,001. Durch den Austausch von einfachen Linearführungen mit hoher Reibung wird der Einsatz von kleineren und preiswerteren Motoren, Riemen, Getrieben und Kugelgewindespindeln möglich.
- · Geschlossene und offene Ausführungen.
- · Integrierte Doppellippendichtringe schützen vor Verschmutzung und sichern die Schmierung.

Super-Smart-Linearkugellager™ stellen weltweit einen bedeutenden Fortschritt in der Linearführungstechnologie dar. Die Super-Smart-Linearkugellager™ bieten im Vergleich zu Standard-Linearkugellagem im Industriestandard die doppelte Tragfähigkeit oder die achtfache Weglebensdauer. Die Super-Smart-Linearkugellager™ besitzen die dreifache Tragfähigkeit oder die 27-fache Weglebensdauer konventioneller Linearführungen.

Technologisch fortschrittliche Konstruktion

Beim Super-Smart-Linearkugellager™ nehmen vier gehärtete Stahlelemente die Lagerkräfte auf, siehe Abb. 1 und 2.


Das erste Element ist der Stahl-Außenring, der die Durchmesserstabilität des Lagers auch bei leicht unrunden Gehäusen gewährleistet. Die einzigartige Konstruktion dieses Ringes ermöglicht auch die Einstellung des Lagers und den Ausgleich des Durchmesserspiegels.


Das zweite Element ist die hochpräzise verarbeitete doppelreihige Lagerplatte, die die doppelte Tragfähigkeit aufweist und selbsteinstellend wirkt.

Das dritte Element sind die Wälzkörper. Alle Super-Smart-Linearkugellager™ arbeiten mit präzisionsgeschliffenen Lagerkugeln, deren Rundheit und sphärische Gestalt den höchsten Qualitätsstandards genügen. Das Ergebnis sind maximale Tragfähigkeit, Weglebensdauer und Leistung.

Der Montage-Vorteil

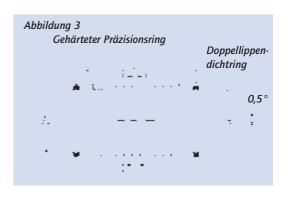
Der PowerRail-Vorteil ist die Fähigkeit eines Super-Smart-Linearkugellagers™, Torsions-Fluchtfehler aufgrund von Trägerunebenheiten, Bearbeitungsfehlern oder Verziehen der Maschine auszugleichen, ohne die Lager zusätzlich stark zu beanspruchen. Montagezeit und -kosten werden auf ein Minimum reduziert, während die Lagerleistung maximiert wird.

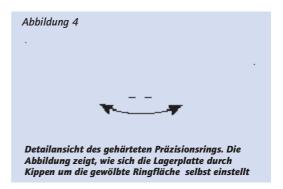
Universelle Selbsteinstellung

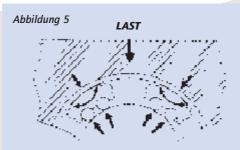
Die Lagerplatte des Super-Smart-Linearkugellagers ™
weist viele einzigartige und technologisch fortschrittliche
Eigenschaften auf. Die universelle Selbsteinstellung sorgt
dafür, daß die Super-Smart-Linearkugellager™ hinsichtlich Tragfähigkeit, Weglebensdauer, gleichmäßigem
Betrieb und Reibungskoeffizient optimale Leistungen
erreichen. Die universelle Selbsteinstellung besteht aus
drei Teilbewegungen:

kippen, rollen und rotieren.

Kippen


Die Lagerplatte ist so konstruiert, daß sie mit einem Winkel von 0,5° im gehärteten Außenring kippen kann, siehe
Abb. 3 und 4. Durch diese Selbsteinstellung kann ein
Super-Smart-Linearkugellager™ Fluchtungsfehler von
Gehäusebohrungen oder Wellendurchbiegung ausgleichen. Diese Kippfunktion ermöglicht den glatten Ein- und
Austritt der Präzisionslagerkugeln in und aus der Lastzone und sorgt dadurch für einen konstant niedrigen Reibungskoeffizienten. Beim Ausgleichen von Fluchtungsfehlem wird jede lasttragende Kugel in der Lastzone gleichmäßig stark belastet, wodurch eine maximale Tragfähigkeit erreicht wird.


Rollen


Das zweite entscheidende Konstruktionsmerkmal der Super-Smart-Linearkugellager™ ist die Fähigkeit, zu rollen. Die Käfigbahn ist so konstruiert, daß ihr Außenradius etwas kleiner ist als der Innenradius des Präzisions-Außenrings, siehe Abb. 5. Dadurch kann die Käfigbahn Torsions- Fluchtungsfehler ausgleichen und die Last gleichmäßig auf ihre beiden Bahnen verteilen. Die Rollfunktion sorgt für maximale Tragfähigkeit und lange Weglebensdauer.

Rotieren

Durch die Fähigkeit zum Kippen und Rollen können sich die Käfigbahnen des Super-Smart-Linearkugellagers™ auch um ihre Mittelachse drehen (gieren), siehe Abb. 6. Dadurch kann das Super-Smart-Linearkugellager™ Schieflagen durch Fluchtungsfehler ausgleichen. Das Ergebnis ist ein konstant niedriger Reibungskoeffizient und eine maximale Tragfähigkeit.

Detailansicht einer doppelreihigen Lagerplatte. Die Abbildung zeigt, wie sich die doppelreihige Lagerplatte durch Rollen selbst einstellt, um die Last gleichmäßig auf die beiden Kugellaufbahnen zu verteilen.

Die doppelreihige Lagerplatte dreht um ihre Mittelachse (rotiert), um eine Schieflage relativ zur Präzisionsführungswelle auszugleichen.

Geschwindigkeit, Temperatur, Schmierung, Reibung

Standard Linearkugellager und Linearkugellager mit Winkelfehlerausgleich sind bis zu einer Geschwindigkeit von 3 ms⁻¹ einsetzbar. Bei höheren Geschwindigkeiten bis zu 5 ms⁻¹ sind Vollstahl Linearkugellager mit Sonderschmierstoff einzusetzen.

Der Temperaturbereich in dem diese Lager eingesetzt werden können liegt zwischen -20 und +80°C. Für den Einsatz bei Temperaturen über +80°C empfehlen wir Vollstahl Linearkugellager mit Sonderschmierstoff.

Die Linearkugellager sind für Öl- und Fettschmierung ausgelegt. Bei hohen Geschwindigkeiten, größer 2 ms-1 und Temperaturen +140°C, empfehlen wir den Spezialschmierstoff Klüber Lubrication Isoflex NCA 15.

Im Normaltemperaturbereich und Geschwindigkeiten kleiner 2 ms⁻¹ sind Standard Schmierstoffe der NLGI-Klasse II einzusetzen.

Der Reibungskoeffizient ist abhängig von der Dichtungsqualität sowie von Andruck und Schmierung.

Die Linearkugellager haben einen Reibungskoeffizienten von 0,001 - 0,005.

Aufbau, Konstruktion und Werkstoffe

- Lineargehäuse-Einheiten (AL-Strangpressprofil) Lineargehäuse-Einheiten können mit allen in diesem Katalog aufgeführten Linearlagern ausgestattet werden. Die Aluminium-Strangpress-Gehäuse sind aus Al Mg Si 0,5 F26.
- Lineargehäuse-Einheiten (Kugelgraphitguss / Aluminium Druckguss)

Diese Lineargehäuse-Einheiten bestehen aus Standardoder Linearkugellager mit Winkelfehlerausgleich, Gleitlager und Grauguss- bzw. Al-Druckguss-Gehäuse. Die Bohrung für die Aufnahme der Linearkugellager hat standardmäßig die Passung H7.

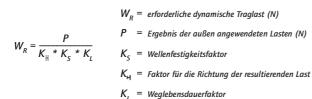
Weitere Toleranzen entnehmen Sie bitte diesem Katalog.

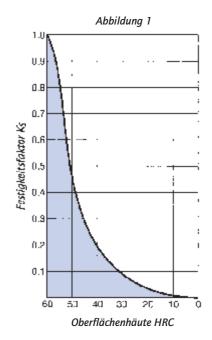
Einbauhinweise

Die im Katalog aufgeführten Linearkugellager sind für eine Bohrung mit Toleranz H7 ausgelegt.

Sie können mit Sicherungsringen oder -blechen gehalten werden. Die offenen Lager werden über Schrauben, Kerbstifte oder Schmiermittelschlitzschraube (Seite 13) in der Radial-Axial-Fixierbohrung gehalten. Standard Linearkugellager können mit Vorspannung auch in Passungen JS6 bis M6 gehalten werden.

Aus sicherheitstechnischen und ökonomischen Erwägungen empfehlen wir Ihnen jedoch auf unsere bereits vormontierten Gehäuseeinheiten zurückzugreifen.


Weglebensdauer und Traglast für Linearkugellager

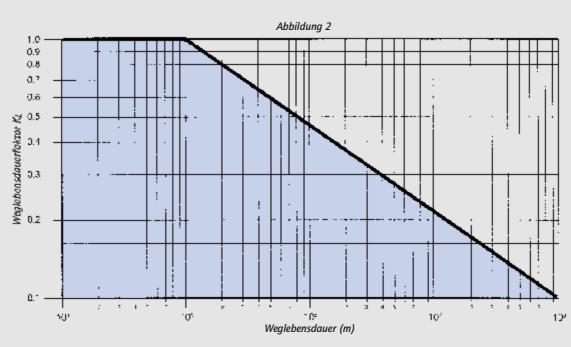

Traglast

Die in den Tabellen aufgeführten Lastverhältnisse gelten für die im Katalog aufgeführten Linearkugellager in Verbindung mit Präzisions-Stahlwellen.

- 1. Die Last wird auf 90 $^{\circ}$ im Verhältnis zur waagerechten Ebene angewendet
- 2. Die Oberflächenhärte beträgt HRC 62±2.

Die folgende Formel gilt für andere als die angegebenen Konfigurationen:

Lastrichtung


Der Lastkorrekturfaktor K ist für das jeweilige Linearkugellager oder Lineargehäuse nach Rücksprache zu erfahren.

Wellenfestigkeit

Bei Wellen, welche nicht den HRC 62±2 Wellenfestigkeitsdaten entsprechen, gilt ein Wellenfestigkeitsfaktor K_s.

Weglebensdauer

Der Korrekturfaktor für die Weglebensdauer K, kann Abb. 2 entnommen werden.

Lastgrenze

Die Lastgrenze ist die Maximallast, der ein Lager ausgesetzt werden darf. Die jeweilige Anwendung muss grundsätzlich analysiert werden, um sicherzustellen, dass die Höchst- und / oder Schocklasten nicht zu einer Überschreitung der Lastgrenze führen.

Dynamische Lastverhältnisse

Das dynamische Lastverhältnis bezieht sich auf die maximale Dauerlast, der ein Lager ausgesetzt werden kann, und zwar mit 90%iger Verlässlichkeit, dass bei regulären Betriebsbedingungen eine Lebensdauer von 100 km erzielt werden kann. Dabei muss jedoch beachtet werden, dass extrem kurze Hübe und die Richtung der angewendeten Last wesentliche Faktoren sind. Die Weglebensdauer kann anhand der folgenden Formel ermittelt werden:

$$wobei: \qquad L_m = Weglebensdauer in m \\ W = dynamisches Lastverhältnis gemäß den Tabellen in N \\ L_m = (\frac{W}{P} * K_{||} * K_{||})^3 * 10^5 m \qquad P = Ergebnis der außen angewendeten Last in N \\ K_{||} = Richtungsfaktor der resultierenden Last \\ K_{||} = Wellenfestigkeitsfaktor$$

Kalkulationsbeispiele:

Ermittlung der richtigen Linearkugellagergröße für eine bestimmte Anwendung. In diesem Beispiel wird das Lager-/ Wellensystem einer rechtwinklig zur Wegrichtung angewendeten Last von 2300 N ausgesetzt. Die Last wird gleichmäßig auf die vier geschlossenen Super-Smart-Linearkugellager™ verteilt. Der Schlitten bewegt sich über einen 0,3 m langen Hub mit einer Frequenz von 100 vollständigen Zyklen pro Minute vor- und rückwärts. Die minimal erforderliche Lebensdauer beträgt 3500 Stunden. Zudem wird eine gehärtete Präzisionsstahl-Welle eingesetzt. Zunächst muss die auf jedes Super-Smart-Linearlager wirkende Durchschnittslast ermittelt werden.

$$P = \frac{2300}{4} = 575 \, \text{N}$$
Danach wird die entsprechende Weglebensdauer in m ermittelt:}
$$L_m = 2 * s * f * L_h * 60 \qquad \text{wobei: } s \qquad = \text{Hub in m}$$

$$L_m = 2 * 0.3 * 100 * 3500 * 60 \qquad f \qquad = \text{Frequenz in Zyklen pro min}$$

$$L_m = 1.26 * 10^7 \text{m} \qquad \qquad L_h \qquad = \text{erforderliche Lebensdauer in Stunden}$$

Von Abb. 1 ausgehend (Grafik) beträgt der Weglebensdauerfaktor (K,) 0,2.

Von Abb. 2 ausgehend (Grafik) beträgt der Wellenfestigkeitsfaktor (K_s) 1.

Bei geschlossenen Super-Smart-Linearkugellagern $^{\text{TM}}$ beträgt der Minimalwert für K_{H} 1, der für diese Kalkulation angenommene Wert.

Die erforderliche dynamische Traglast wird anhand der folgenden Formel ermittelt:

$$WR = \frac{P}{K_1 * K_{\varsigma,*}K_{\sharp}} \qquad WR = \frac{575}{0.2 * 1 * 1} = 2875 N$$

Unter Verweis auf die jeweiligen Abschnitte in diesem Katalog über technische Produktdaten und Abmessungen lässt sich feststellen, dass das Linearlager mit der nächsthöheren Traglast das Super-Smart-Linearkugelllager mit einer dynamischen Traglast von 3820 N ist.

Ermittlung der Weglebensdauer

P = 575 N ist das Ergebnis der Außenlast

Die vorausgesetzte Weglebensdauer des Super-Smart-Linearkugellagers™ unter den in dem Beispiel genannten Bedingungen ist wie folgt:

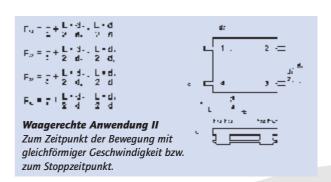
$$W = 3820 \text{ N}$$
 ist die bemessene dynamische Traglast $K_{\text{H}} = 1$ ist der Orientierungsfaktor

Die oben genannten Werte werden in die folgende Formel eingebracht:

$$L_m = (\frac{W}{P} * K_{_{\rm H}} * K_{_{\rm S}})^3 * 10^5 m = 2,93 * 10^7 m$$

Das Ergebnis wird wie folgt in Stunden umgerechnet:

$$L_h = (\frac{L_m}{2 * 60 * s * f}) = 8139 \text{ Hours}$$


 $K_c = 1$ ist der Wellenfestigkeitsfaktor

Lastberechnug

Bei der Auslegung eines linearen Bewegungssytems muss in Erwägung gezogen werden, wie die Betriebsvariablen die Leistung beeinflussen. Die folgenden Beispiele zeigen, wie die Stellung der Last und das Zentrum der Anziehungskraft die Produktwahl beeinflussen können. Bei der Bewertung einer Anwendung muss jede auf das System einwirkende Kraft überprüft werden, um zur bestmöglichen Produktwahl zu gelangen.

Ausdrücke:

 d_0 = Entfernung zwischen den Mittellinien der Lagergehäuse

 d_1 = Entfernung zwischen den Mittellinien der Wellen

d₂ = Entfernung von der Mittellinie des Schlittens zum Schwerpunkt

d₃ = Entfernung von der Mittellinie des Schlittens zum Schwerpunkt

L = Last(N)

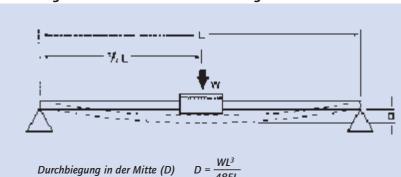
 F_{NX} = Kraft in der X-Achsenrichtung (N)

 F_{NY} = Kraft in der Y-Achsenrichtung (N)

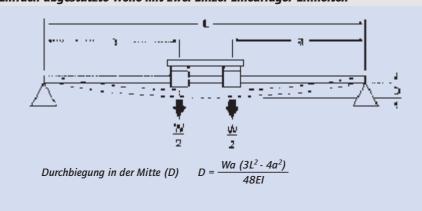
 F_{NZ} = Kraft in der Z-Achsenrichtung (N)

Zum Zeitpunkt der Bewegung mit gleichförmiger Geschwindigkeit bzw. zum Stoppzeitpunkt.

Wellendurchbiegung:

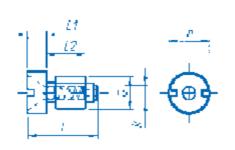

Beim Einsatz gehärteter Präzisionsstahlwellen in einer endgestützten Ausführung muss gewährleistet werden, dass sich die Wellendurchbiegung an den Lagerbereichen innerhalb der Leistungsgrenzen bewegt.

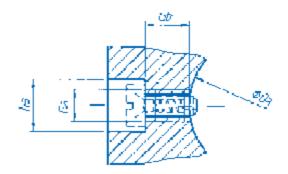
Die nachfolgenden Gleichungen geben die Durchbiegung in der Mitte einer endgestützten Welle an. Systeme mit Tragschienen werden nicht denselben Durchbiegungsarten ausgesetzt.


EI-Werte für gehärtete und geschliffene Präzisionsstahlwellen

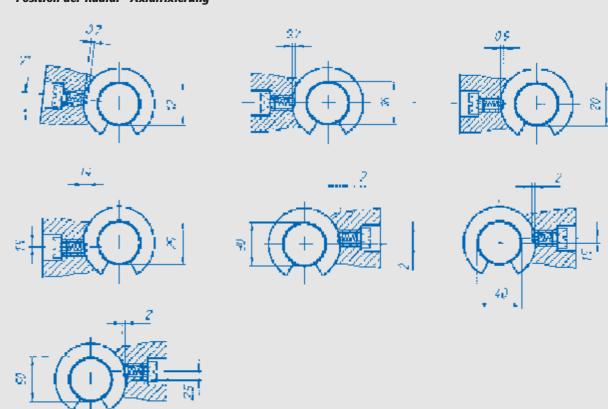
Wellen ∵ (mm)	El (Nm²)
5	5.838
8	38.26
10	93.41
12	193.7
16	612.2
20	1495
25	3649
30	7566
40	2.391 ⋅ 10⁴
50	5.838 · 10 ⁴
60	1.211 · 10 ⁵
80	3.826 · 10 ⁵

Einfach abgestützte Welle mit Tandem-Linearlager-Einheit




Einfach abgestützte Welle mit zwei Einzel-Linearlager-Einheiten

Schmiernippel-Schlitzschraube



Abmessungen in mm

Wellen-C	G	L	L1	L2	k	⊖e	⊖Da	Ga	Gb ^{±0,2}	∴Na ^{±0,4}
12	M5	10,9	3	6	3	6,45	22	M5	7,2	8
16	M5	10,9	3	6	3	6,45	26	M5	7,2	8
20	M5	10,9	3	6	3	6,45	32	M5	7	8
25	M5	10,9	3	6	3	6,45	40	M5	6,5	8
30	M5	10,9	3	6	3	6,45	47	M5	6,2	8
40	M5	10,9	3	6	3	6,45	62	M5	6,2	8
50	M5	10,9	3	6	3	6,45	75	M5	6,2	8

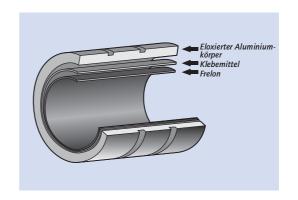
Position der Radial - Axialfixierung

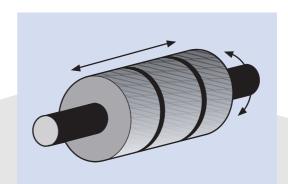
Präzisionsgleitlager aus Werkstoff Frelon

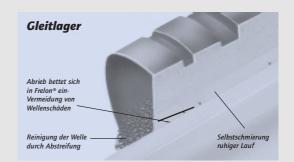
Frelon® ist ein Verbundmaterial aus Teflon® und Füllstoffen, das für eine verbesserte Leistung gegenüber anderen Lagern entwickelt wurde. Es bietet geringen Verschleiß, geringe Reibung, Selbstschmierung und hohe Festigkeit.

Teflon®-Eigenschaften

- Selbstschmierend
 (läuft ohne Zugabe eines Schmierstoffs)
- Möglichkeit, harte Partikel einzubetten
- Hoher Temperaturbereich (-240 °C bis +260 °C)
- · Nahezu chemisch inaktiv
- Vibrationsdämpfend


Vorteile des Füllstoffes


- Hohe Tragfähigkeit
- · Hohe Festigkeit
- Geringer Verschleiß im Vergleich zu anderen Materialien
- Der Frelonwerkstoff wird auf Molekularebene in den Lagerkörper geklebt, wodurch die Belastung übertragen und sich im Lager aufbauende Wärme abgeleitet wird
- Korrosionsarm durch die Verwendung von eloxiertem Aluminium oder rostbeständigem Stahl
- Patentierte Selbsteinstellung (für Baureihen FM, FMN, FMA, FMT)
- Ermöglicht sowohl lineare, als auch oszillierende oder rotierende Bewegungskombinationen
- Wartungfreier Betrieb
- Beschädigt die Welle nicht
- Ruhiger, störungsfreier Betrieb
- Sehr präzise alle maßgeblichen Oberflächen werden auf Präzisionsschleifmaschinen geschliffen


Vergleich mit Linearkugellagern

- Die statische Tragfähigkeit ist durchschnittlich 4 x höher als bei Linearkugellagern, was dem Konstrukteur gestattet, kompaktere Baueinheiten zu verwenden
- Stoßbelastungen werden absorbiert, ohne einzelne Bauteile zu beschädigen
- Gleichbleibende Reibwerte, die sich während der Lebensdauer des Lagers nicht verändern
- Lagerwerkstoff ähnlich verstärkten Teflon Dichtungen
- · Wirkt selbsttätig als Abstreifer
- Wartungsfreier Betrieb

Teflon® ist ein eingetragenes Warenzeichen der Dupont Corporation.

Chemische Beständigkeit

Frelon®

Der Frelon®-Lagerwerkstoff ist chemisch beinahe vollkommen inaktiv. Nur geschmolzenes Natrium und Fluor bei höheren Temperaturen und Drücken greifen das Material an. Der Einsatz in Verbindung mit flüssigem Stickstoff, N202, Hydrazin, UDMH, Kohlenwasserstoff-Brennstoffen, Hydrogen-Peroxiden mit hoher Festigkeit usw. ist möglich.

Aluminium, Standardeloxierung und Hartschichteloxierung

Präzisionsgleitlager werden aus der Aluminiumlegierung AIMg1 SiCu gefertigt. Die Schwefelbadeloxierung und Nickelazetatbeschichtung gewährleisten die beste Korrosionsbeständigkeit, die für eloxierte Beschichtungen erzielbar ist. Sie können 14 Tage einer 5% igen Salzlösung bei ca. 36°C ausgesetzt werden, ohne bedeutsamen Schaden zu nehmen. Wenn die Beschichtung intakt ist, ist sie in den meisten Flüssigkeiten mit einem pH-Wert von 5 bis 8 chemisch inaktiv.

Hartschichteloxierung bietet die gleiche chemische Beständigkeit, wird jedoch in einer Dicke von 50 µm aufgetragen, wodurch die Oberflächenhaltbarkeit noch erhöht wird.

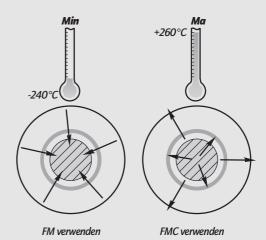
Rostbeständiger Stahl

Für Speziallager aus rostbeständigem Stahl wird das Material 1.4401 verwendet, das im Vergleich zu anderen rostbeständigen Stählen eine höhere Beständigkeit aufweist. Im allgemeinen wird 1.4401 von den konventionellen rostbeständigen Stählen als der mit den besten Korrosionseigenschaften angesehen.

Bei Fragen zu speziellen Medien sprechen Sie bitte unseren technischen Dienst an.

Temperatur

Präzisionsgleitlager können in einem großen Temperaturbereich arbeiten: -240°C bis +260°C


- · Die Leistungsmerkmale bleiben unverändert
- Der dünne Frelonwerkstoff ermöglicht eine gute Wärmeableitung durch den Lagerkörper

Wärmeausdehnung

- Die standardmäßig lieferbaren Lagerinnendurchmesser sind so konzipiert, dass sie in den meisten industriellen Anwendungsfällen eingesetzt werden können
- Für Temperaturen unter -18 °C wird der Standarddurchmesser empfohlen (FM-Serie)
- Für extrem hohe Temperaturen werden aufgrund des höheren Laufspiels die Lager mit ausgleichendem Innendurchmesser (FMC) empfohlen

Achtung: Um das richtige Laufspiel sicherzustellen, wird empfohlen, die tatsächlichen Maße bei extremen Temperaturen zu überprüfen.

Temperaturbereiche

Belastung

Offene Lager

Präzisionsgleitlager können in jeder Lage arbeiten.

• Die Tragfähigkeit variiert bei offenen Lagern je nach Lage

Anwendungshinweise

Freitragende Lasten

• Max. Hebelarm Verhältnis 2:1. Der Abstand zwischen Welle und Last darf maximal 2mal so groß sein, wie der Mittenabstand der Lager.

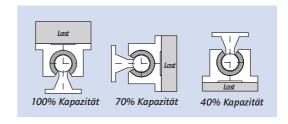
Achtung: Ein Überschreiten des Verhältnisses 2:1 führt zum Klemmen!

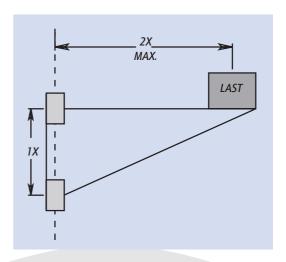
• Dieses Prinzip ist nicht lastabhängig! Es ist nicht bedingt durch Kantenbelastung. Es ist auch nicht abhängig von der eingesetzten Antriebskraft! Die Lager klemmen bei manuellem und mechanischem Antrieb

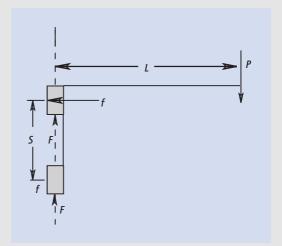
- L = Abstand Welle zur Last
- s = Abstand Mitte zu Mitte der Lager
- Kraft auf die Lager
- Reibkraft für jedes Lager
- 11 = Reibungskoeffizient (ca. 0,25 bei Stillstand)

Gleichgewicht der Momente:

$$f \cdot s = L \cdot P$$


$$L/s = f/P$$


Berechnung der Reibkraft:


$$F = f \cdot \mu$$

Anmerkung: Gesamte ausgeübte Reibkraft ist 2 F. Um das Gleitlager zu blockieren, muss die gesamte Reibkraft gleich (oder größer als) P sein.

$$P = 2 F = 2 f \cdot \mu$$

PV-Werte

Bewertung eines Gleitlagers

Die Leistungsfähigkeit eines Gleitlagers wird als

"PV"-Wert angegeben

"P" = Druck

 $_{''}V'' = Geschwindigkeit\ oder\ Umfangsgeschwindigkeit$

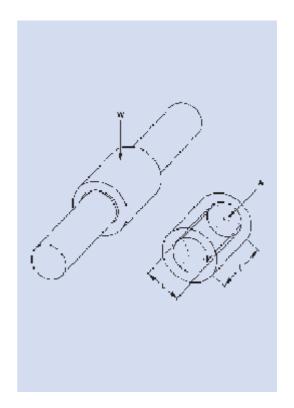
"PV" = Wert für Druck x Geschwindigkeit

Max. Parameter für Lineargleitlager

 $_{"}P" = 1034 \text{ N/cm}^2$

 $_{"}V" = 43 \text{ m/min (trocken)}$

 $_{"}PV" = 2150 \text{ N/cm}^2 \text{ x m/min}$


Damit das Lager ordnungsgemäß funktioniert, dürfen alle drei Parameter nicht überschritten werden.

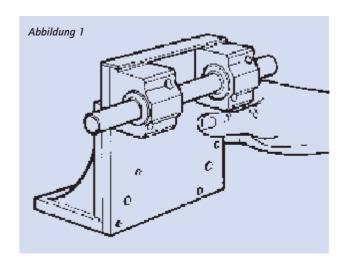
Formeln

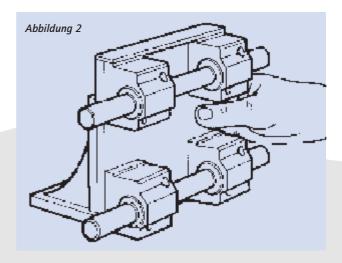
 $A = L \times d (cm^2)$

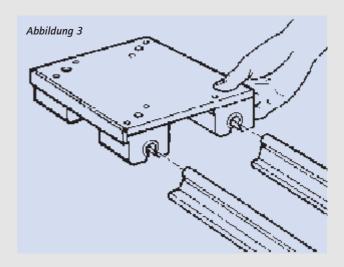
 $P = WA (N/cm^2)$

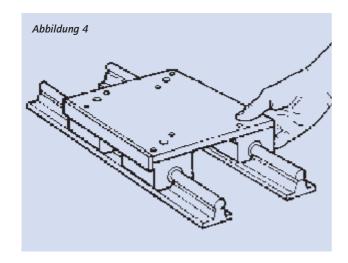
 $PV = P \times V (N/cm^2 \times m/min)$

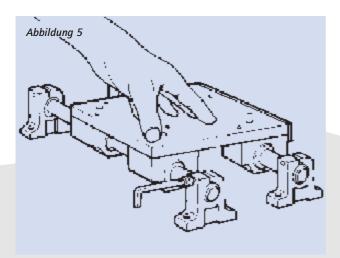
Die Linearkugellager werden mit extrem geringen Toleranzen hergestellt und gewährleisten gleichmäßige und fast reibungslose Bewegungen. Diese ausgezeichnete Leistung lässt sich aber nur dann erzielen, wenn die Lager sorgfältig montiert worden sind.

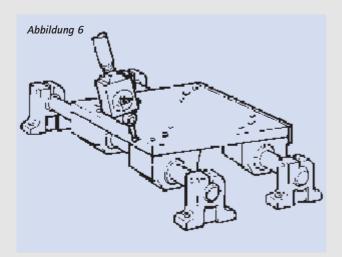

Dabei sind die Lagereinstellung und die Parallelität der Welle die beiden wichtigsten Faktoren. Zum Erreichen einer gleichmäßigen Bewegung werden normalerweise zwei Linearlager für jede Welle eingesetzt. Die Gehäuse sollten mit dem unten beschriebenen Verfahren sorgfältig ausgerichtet werden. Bei Einsatz von Tandemlagergehäusen entfällt diese Einstellung.


Ferner muss sichergestellt werden, dass die Höhe von der Oberfläche der Gehäusehalterung zur Welle mit einer Toeranz von 0,025 mm konstant ist.


Je nach Genauigkeit der Montageflächen, an denen die Gehäuse angebracht werden, können Ausgleichsbleche benötigt werden.


Die Gehäuse können wie folgt an der Montageplatte befestigt werden:


- a. Zwei Gehäuse anbringen, ausrichten und die Befestigungsschrauben festziehen.
 (Abb. 1)
- b. Das zweite Gehäusepaar an der gegenüberliegenden Seite des Schlittens anbringen und die Schrauben handfest anziehen.
- c. Eine Probewelle mit entsprechendem Durchmesser und Toleranzbereich (h6) durch dieses Gehäusepaar führen und dieses entsprechend ausrichten.
 (Abb. 2)
- e. Nach dem korrekten Ausrichten des Gehäusepaares auch diese Befestigungsschrauben festziehen.



Nachdem der Schlitten richtig vorbereitet worden ist, müssen die Wellen an der Montagefläche befestigt werden. Um eine gleichmäßige Bewegung zu gewährleisten, müssen die Wellen mit einer Toleranz von nur 0,025 mm über die gesamte Hublänge parallel montiert werden.

Dazu folgendes Verfahren anwenden:

- a. Eine Welle (entweder endgestützt oder durchgehend unterstützt) mit Befestigungsschrauben handfest an der Montagefläche anschrauben.
- b. Die Welle mit einem optischen Ausrichtwerkzeug, wie beispielsweise einem Laser, genau gerade ausrichten und die Schrauben festziehen.
- c. Wenn die erste Welle richtig befestigt ist, die zweite Welle ausrichten und handfest anschrauben.
- d. Danach wird der Schlitten montiert; die Schlittenbewegung zieht die zweite Welle in eine parallele Stellung zur ersten.

(Abb. 3 u. 4)

e. Wenn die zweite Welle festgeschraubt ist, ist der Vorgang abgeschlossen. Beachten Sie, dass bei durchgehend unterstützten Wellen die Schrauben angezogen werden sollten, wenn sich der Schlitten in der Nähe befindet. Endgestützte Wellen sollten fest geschraubt werden, wenn sich der Schlitten am Ende der Welle befindet.

(Abb. 5)

f. Zu diesem Zeitpunkt kann eine zusätzliche Prüfung durchgeführt werden, um sicherzustellen, dass der Schlitten richtig in der Spur bleibt, d. h. dass sich die Kante des Schlittens parallel zur Welle bewegt. Dazu eine Messuhr an die Kante des Schlittens anlegen. Bei Verschieben des Schlittens entlang der Wellen sollte der angezeigte Wert innerhalb der Toleranz liegen. (Abb. 6)

Bestellschlüssel für Lineargehäuseeinheiten:

AG -

OP -

20 -

5 -

V-

X

Sonderausführung nach Vorgabe/Zeichnung X = Zeichnungs Nr.

Dichtung

leer = integrierte Abstreifer
V = beidseitige Vorsatzdichtung

Linearlager

C = Linearkugellager kompakt

K = Linearkugellager Standard

V = Linearkugellager Vollstahl

KS = Linearkugellager Standard mit Winkelfehlerausgleich

S = Linearkugellager Winkelfehlerausgleich / hohe Tragzahl

SCR = Linearkugellager korrosionsbeständig, Winkelfehlerausgleich

L = Lineargleitlager Keramik

FM = Lineargleitlager selbstschmierend

FMA = Lineargleitlager selbstsch.,Winkelfehlerausgleich

FMT = Lineargleitlager selbstschmierend kompakt

Wellendurchmesser ∅8 bis ∅80

Ausführung

leer = geschlossen

AJ = Radialluft einstellbar

OP = offen

OPAJ = offen, Radialluft einstellbar

AL - Strangpress - Profile:

AGC = Kompakt geschlossen

TAGC = Kompakt Tandem geschlossen

ALGS = Stehlager

AG = Standard

AGS = seitlich offen

TAG = Tandem

QAG = Quadro

FAG = Flansch

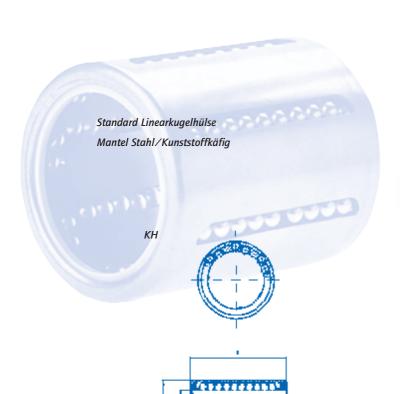
FTAG = Flansch - Tandem

FTRG = Rundflansch - Tandem

AL - Druckguss:

MAG = Stehlagergehäuse

Kugelgraphitguss:


GG = Stehlagergehäuse

FGG = Flanschgehäuse

Einzelbauteile: Vorsatzdichtungen, Einklipsdichtungen und Sicherungsringe sowie Kerbstifte und Radial-Axial-Fixierschrauben sind lagermäßig verfügbar.

Es fällt in den Verantwortungsbereich des Anwenders festzustellen, ob sich die in diesem Katalog aufgeführten Komponenten für die jeweilige Anwendung eignen. Fehlerhafte Produkte werden kostenlos ersetzt, sofern sie unverzüglich zurückgesandt werden. Eine über solch einen Austausch hinausgehende Haftung wird nicht übernommen.

	Abmessungen in mm	1		Tragzahlen (N)		Gewicht
Artikel-Nr.	₽ d	Ø D	L	dyn	stat.	(g)
KH-0622	6	12	22	400	239	7
KH-0824	8	15	24	435	280	12
KH-1026	10	17	26	500	370	14,5
KH-1228	12	19	28	620	510	18,5
KH-1428	14	21	28	620	520	20,5
KH-1630	16	24	30	800	620	27,5
KH-2030	20	28	30	950	790	32,5
KH-2540	25	35	40	1990	1670	66
KH-3050	30	40	50	2800	2700	95
KH-4060	40	52	60	4400	4450	182
KH-5070	50	62	70	5500	6300	252

Bestellbeispiel:

KH -

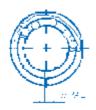
121-

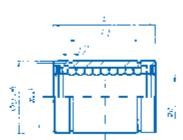
PP

P = einseitig, PP = beidseitig gedichtet

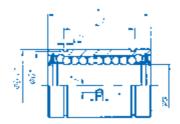
Wellendurchmesser/Länge

Kugelhülse




Linearkugellager

Standard Linearkugellager Mantel Stahl/Kunststoffkäfig



	Abme	essunge	n in mm			Tragzahl (N)		Gewicht					
Artikel-Nr.	Ød	* D	L	L1	L2	⊗ D1	h	W	(°)	F	dyn	stat.	(kg)
LME-05	5	12	22 ^{-0,2}	14,5 ^{-0,2}	1,1	11,5	1,0	-	-	-	210	270	0,01
LME-08	8	16	25 ^{-0,2}	16,5 ^{-0,2}	1,1	15,2	1,0				270	410	0,02
LME-12	12	22	<i>32</i> ^{-0,2}	22,9 ^{-0,2}	1,3	21,0	1,5	-	-	-	520	800	0,04
LME-16	16	26	<i>36</i> -0,2	<i>24,9</i> ^{-0,2}	1,3	24,9	1,5	10,0	78	0	590	910	0,06
LME-20	20	32	45 ^{-0,2}	<i>31,5^{-0,2}</i>	1,6	30,3	2,0	10,0	60	0	880	1400	0,09
LME-25	25	40	<i>58</i> ^{-0,3}	44,1-0,3	1,85	37,5	2,0	12,5	60	1,5"	1000	1600	0,21
LME-30	30	47	<i>68</i> ^{-0,3}	<i>52,1</i> -0,3	1,85	44,5	2,0	12,5	50	2,0	1600	2800	0,32
LME-40	40	62	80 ^{-0,3}	<i>60,6</i> ^{-0,3}	2,15	59,0	3,0	16,8	50	1,5	2200	4100	0,70
LME-50	50	75	100-0,3	77,6 ^{-0,3}	2,65	72,0	3,0	21,0	50	2,5	3900	8100	1,13
LME-60	60	90	125-0,4	101,7-0,4	3,15	86,5	3,0	27,2	54	0'2)	4800	10200	2,05

Bestellbeispiel:

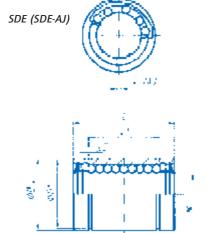
LME -121-

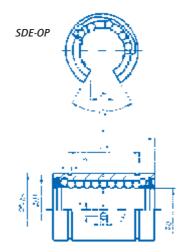
UU -FX OP -Radial-Axial Fixierbohrung

U = einseitig, UU = beidseitig gedichtet OP = Offen ab ∅16 / AJ = Radialluft einstellbar ab ∅12

Wellendurchmesser Standard Linearkugellager

Die Linearkugellager sind auch in metrischen-japanischen (LM) Abmessungen auf Anfrage ver-fügbar.


⁽¹) Fixierbohrung (¾ 3 mm. Die Bohrung für das radiale und axiale Fixieren befindet sich unter-halb der Mitte (siehe Seite 13).


⁽²⁾ Fixierbohrung 🖈 5 mm.

	Abmes	sungen	in mm								Tragzahl (N)		Gewicht
Artikel-Nr.	₽d	Ø D	L	L1	L2	D1	h	W	(°)	F	dyn	stat.	(kg)
SDE-05	5	12	22 -0,2	14,5 ^{-0,2}	1,1	11,5	1,0	-	-	-	168	308	0,01
SDE-08	8	16	25 ^{-0,2}	16,5 ^{-0,2}	1,1	15,2	1,0	-	-	-	196	364	0,02
SDE-12	12	22	<i>32</i> ^{-0,2}	22,9 ^{-0,2}	1,3	21	1,5	7,5	78	1,35	420	714	0,05
SDE-16	16	26	<i>36</i> ^{-0,2}	24,9 ^{-0,2}	1,3	24,9	1,5	10,0	78	0	686	1092	0,08
SDE-20	20	32	45 ^{-0,2}	<i>31,5^{-0,2}</i>	1,6	30,3	2,0	10,0	60	0	924	1610	0,11
SDE-25	25	40	<i>58</i> ^{-0,3}	44,1-0,3	1,85	37,5	2,0	12,5	60	1,5(1)	1470	2590	0,22
SDE-30	30	47	<i>68</i> ^{-0,3}	52,1 ^{-0,3}	1,85	44,5	2,0	12,5	50	2,0	2100	3920	0,29
SDE-40	40	62	80 ^{-0,3}	60,6 ^{-0,3}	2,15	59,0	3,0	16,8	50	1,5	3290	6300	0,88
SDE-50	50	75	100-0,3	77,6 ^{-0,3}	2,65	72,0	3,0	21,0	50	2,5	5320	9100	1,54
SDE-60	60	90	125-0,4	101,7-0,4	3,15	86,5	3,0	27,2	50	-	8890	16800	2,20
SDE-80	80	120	165-0,4	133,3-0,4	4,15	116	3,0	36,3	50	-	14560	25200	5,50
SDM-100	100	150	175-0,4	125 ^{-0,4}	5,0	145	3,0	50	50	-	17640	28140	9,90

Bestellbeispiel:

SDE - Ø -

OP -

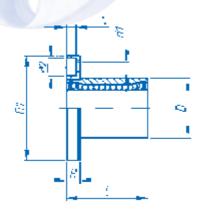
UU -

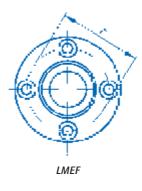
FX

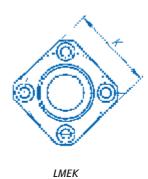
Radial-Axial Fixierbohrung

U = einseitig, UU = beidseitig gedichtet

OP = Offen / AJ = Radialluft einstellbar ab ∅12


Wellendurchmesser Standard Linearkugellager Vollstahl Die Linearkugellager sind auch in metrischen-japanischen (LM) Abmessungen auf Anfrage verfügbar.


 $^{^{(\}prime)}$ Fixierbohrung $\ ^{(5)}$ 3 mm. Die Bohrung für das radiale und axiale Fixieren befindet sich unterhalb der Mitte (siehe Seite 13).


⁽²⁾ Fixierbohrung : 5 mm.

Flansch-Linearkugellager Mantel Stahl/Kunststoffkäfig

		Abmes	sungen	in mm	Tragzal (N)		1	Gewicht						
Ar	tikel-Nr.	. ∛d	. * D	L	D1	Н	h	d1	d2	r	K	dyn	stat.	(kg)
LM	1E(F/K)-08	8	16	25	32	5	3,3	3,4	6,5	24	25	270	410	0,04
LM	1E(F/K)-12	12	22	32	42	6	4,4	4,5	8	32	32	520	790	0,09
LM	1E(F/K)-16	16	26	36	46	6	4,4	4,5	8	36	35	590	910	0,12
LM	1E(F/K)-20	20	32	45	54	8	5,4	5,5	9,5	43	42	880	1400	0,19
LM	1E(F/K)-25	25	40	58	62	8	5,4	5,5	9,5	51	50	1000	1600	0,34
LM	1E(F/K)-30	30	47	68	76	10	6,5	6,6	11	62	60	1600	2800	0,55
LM	1E(F/K)-40	40	62	80	98	13	8,6	9	14	80	75	2200	4100	1,21
LM	1E(F/K)-50	50	75	100	112	13	8,6	9	14	94	88	3900	8100	1,76
LM	1E(F/K)-60	60	90	125	134	18	10,8	11	17,5	112	106	4800	10200	3,24

Bestellbeispiel:

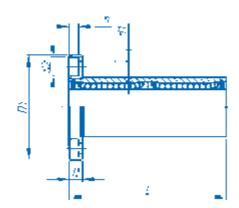
LMEF -

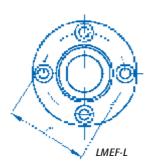
121-

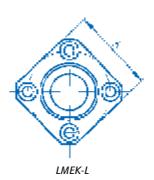
UU

U = einseitig, UU = beidseitig gedichtet

Wellendurchmesser


Linearkuge<mark>llager</mark> LMEF = Rundflansch


LMEK = Quadratflansch


Die Linearkugellager sind auch in metrischenjapanischen (LM) Abmessungen verfügbar.

Flansch Tandem Linearkugellager Mantel Stahl/Kunststoffkäfig

	Abme	essunge	en in mm	,							Tragzal	hl .	Gewicht
Artikel-Nr.	∴*d	Ø₽	L	D1	Н	h	d1	d2	r	K	dyn	stat.	(kg)
LME(F/K)-08-L	8	16	45	32	5	3,3	3,4	6,5	24	25	431	784	0,05
LME(F/K)-12-L	12	22	57	42	6	4,4	4,5	8	32	32	657	1200	0,10
LME(F/K)-16-L	16	26	70	46	6	4,4	4,5	8	36	35	1230	2350	0,19
LME(F/K)-20-L	20	32	80	54	8	5,4	5,5	9,5	43	42	1400	2750	0,26
LME(F/K)-25-L	25	40	112	62	8	5,4	5,5	9,5	51	50	1560	3140	0,52
LME(F/K)-30-L	30	47	123	76	10	6,5	6,6	11	62	60	2490	5490	0,67
LME(F/K)-40-L	40	62	154	98	13	8,6	9	14	80	75	3430	8040	1,59
LME(F/K)-50-L	50	75	192	112	13	8,6	9	14	94	88	6080	15900	3,57
LME(F/K)-60-L	60	90	211	134	18	10,8	11	17,5	112	106	7650	20000	4,59

Bestellbeispiel:

LMEF -

12 - L

UU

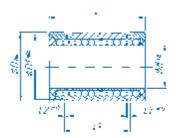
U = einseitig, UU = beidseitig gedichtet

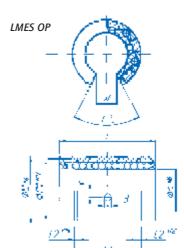
Wellendurchmesser /lange Ausführung

Linearkuge<mark>llager</mark> LMEF = Rundflansch

LMEK = Quadratflansch

Die Linearkugellager sind auch in metrischenjapanischen (LM) Abmessungen verfügbar.


Linearkugellager


Standard Super Linearkugellager mit Winkelfehlerausgleich Andrückplatten Stahl/Kunststoffkäfig

	Abmes	sungen	in mm								Tragzahl	Gewicht
Artikel-Nr.	Ød.	:*D	L	L1	L2	D1	W	(°)	F	dyn	(N) stat.	(kg)
AI LIKEI-IVI.	x.u	\.'D		LI	LZ	וט	**	()	r	uyn	stut.	(NY)
LMES-08	8	16	25	<i>16,5</i> -0,2	1,1	11,5	-	-	-	310	240	0,016
LMES-10	10	19	29	<i>21,5</i> ^{-0,2}	1,1	15,2	-	-	-	500	390	0,017
LMES-12	12	22	32	<i>22,9</i> -0,2	1,3	21,0	6,5	66	1,35	650	520	0,023
LMES-16	16	26	36	<i>24,9</i> ^{-0,2}	1,3	24,9	9,0	68	0	800	630	0,028
LMES-20	20	32	45	<i>31,5</i> ^{-0,2}	1,6	30,3	9,0	55	0	1500	1250	0,061
LMES-25	25	40	58	44,1-0,3	1,85	37,5	11,5	57	1,5 ⁽¹⁾	2500	2200	0,122
LMES-30	30	47	68	<i>52,1^{-0,3}</i>	1,85	44,5	14,0	57	2,0	3200	2800	0,185
LMES-40	40	62	80	60,6 ^{-0,3}	2,15	59,0	19,5	56	1,5	5500	4900	0,360
LMES-50	50	75	100	77,6 ^{-0,3}	2,65	72,0	22,5	54	2,5	8600	7100	0,580

Bestellbeispiel:

LMES -

121-

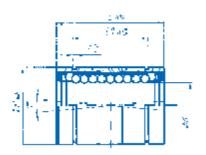
OP -

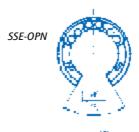
UU

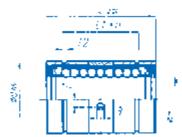
U = einseitig, UU = beidseitig gedichtet

OP = Offen ab Ø12

Wellendurchmesser


Linearkugellager mit Winkelfehlerausgleich


⁽¹⁾Die Bohrung für das radiale und axiale Fixieren befindet sich unterhalb der Mitte (siehe Seite 13).


Linearkugellager mit Winkelfehlerausgleich und hoher Tragzahl Kunststoffkäfig

	Abmes	sungen i	n mm						Tragzah (N)	ıl	Gewicht
Artikel-Nr.	⊘d	Ø₽	L	L1	L2 _{min}	W	F	(°)	dyn	stat.	(kg)
SP-M08	8	16	25	16,2	1,1	-	-	-	310	340	0,016
SP-M12	12	22	32	22,6	1,3	7,0	1,35	70	750	825	0,023
SSE-M16	16	26	36	24,6	1,3	9,4	0	70	2200	2400	0,03
SSE-M20	20	32	45	31,2	1,6	10,2	0	60	4000	4400	0,066
SSE-M25	25	40	58	43,7	1,85	14,4	1,5 ⁽¹⁾	60	6700	7300	0,133
SSE-M30	30	47	68	51,7	1,85	13,9	2,0	55	8300	9100	0,202
SSE-M40	40	62	80	60,3	2,15	18,2	1,5	60	13700	15000	0,392

Bestellbeispiel:

SP/SSE - Ø-

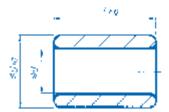
OPN -

CR

korrosionsbeständig W = einseitig, WW = beidseitig gedichtet

OPN = Offen 2012

Wellendurchmesser


Super Plus- / Super-Smart- Linearkugellager™

⁽¹⁾Die Bohrung für das radiale und axiale Fixieren befindet sich unterhalb der Mitte (siehe Seite 13).

Kompakt-Lineargleitlager Gleitfläche: Frelon® - selbstschmierend

Ah	messu	naen	ın	mm

		Toleranzen				Gewicht
Artikel-Nr.	∵³d	+µ	* +µ	." D ^{h7}	L ^{h13}	(kg)
FMT 06	6	10-28	60-78	12	22	0,006
FMT 08	8	13-35	63-85	15	24	0,007
FMT 10	10	13-35	63-85	17	26	0,009
FMT 12	12	16-43	66-93	19	28	0,011
FMT 14	14	16-43	66-93	21	28	0,013
FMT 16	16	16-43	66-93	24	30	0,018
FMT 20	20	20-53	96-129	28	30	0,023
FMT 25	25	20-53	96-129	35	40	0,044
FMT 30	30	20-53	90-129	40	50	0,065
FMT 40	40	25-64	127-166	52	60	0,123
FMT 50	50	25-64	127-166	62	70	0,177

* FMTC

Tragzahlenberechnung: stat: max. Flächenpressung 1050 N/cm²

dyn: max. Flächenpressung 2150 N/cm² x m/min

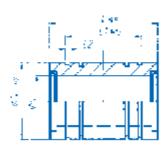
Bestellbeispiel:

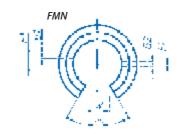
FMT -

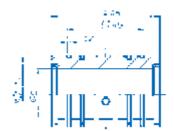

C -

Wellendurchmesser

Präzisionsklasse


Lineargleit<mark>lager</mark>





4.1		
Abmessunaen	ın	mm

		Toleranz												Gewicht
Artikel-Nr.	iZd	+µ	* +µ	∴*D	L	L1	L2 _{min}	W	G1	G2	(°)	F1	F2	(kg)
FM (N) 05	5	10-28	60-78	12	22	14,28	1,14	3,2	0	2,2	60	-	0	0,004
FM (N) 08	8	13-35	63-85	16	25	16,28	1,14	5,1	0	3	60	-	0	0,009
FM (N) 10	10	13-35	63-85	19	29	22,04	1,32	6,4	0	3	60	-	0	0,014
FM (N) 12	12	16-43	66-93	22	32	22,64	1,32	7,6	3	3	78	7	1,35	0,017
FM (N) 16	16	16-43	66-93	26	36	24,64	1,32	10,4	3	2,2	78	0	0	0,028
FM (N) 20	20	20-53	96-129	32	45	31,26	1,63	10,8	3	2,2	60	0	0	0,054
FM (N) 25	25	20-53	96-129	40	58	43,8	1,90	13,2	3	3	60	-1,51	0	0,109
FM (N) 30	30	20-53	96-129	47	68	51,8	1,90	14,2	3	3	72	2	0	0,176
FM (N) 40	40	25-64	127-166	62	80	60,4	2,20	19,5	3	3	72	1,5	0	0,356
FM (N) 50	50	25-64	127-166	75	100	77,4	2,70	24,0	5	3	72	2,5	0	0,628
FM (N) 60	60	30-76	182-228	90	125	101,4	3,20	29,6	6	0	72	0	-	1,117
FM (N) 80	80	30-76	182-228 * FMC (N)	120	165	133,34	4,17	39	8	0	72	0	-	2,679

Bestellbeispiel:

FM -

N = offen**

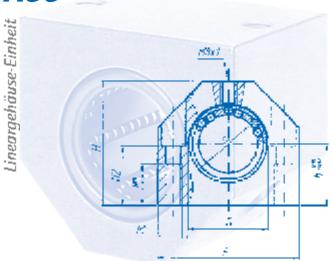
Wellendurchmesser

C = Präzisionsklasse

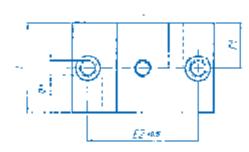
A = Winkelfehlerausgleich

Lineargleit<mark>lager</mark>

Tragzahlenberechnung:


stat: max. Flächenpressung 1050 N/cm²

dyn: max. Flächenpressung 2150 N/cm² x m/min

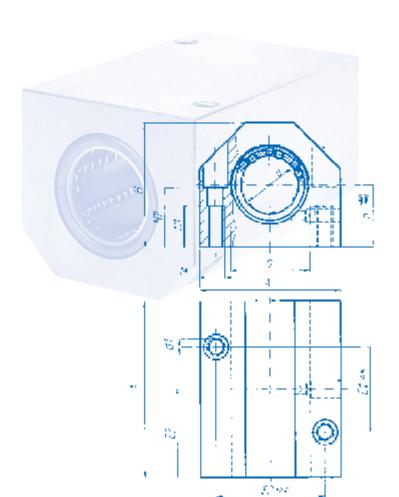

(1) Die Bohrung für das radiale und axiale Fixieren befindet sich unterhalb der Mitte (siehe Seite 13)

** nicht mit Winkelfehlerausgleich

Einzel geschlossen Kompaktausführung Schmierbohrung M8 x 1

	Abmessungen in mm													
Artikel-Nr.	⊘d	₽D	Α	Н	h	L	E1	E2	∴*d1	N1	N2	М	(kg)	
AGC-12	12	19	40	33	17	28	14	29	4,3	11	16	M5	0,18	
AGC-16	16	24	45	38	19	30	15	34	4,3	11	18	M5	0,27	
AGC-20	20	28	53	45	23	30	15	40	5,3	13	22	М6	0,32	
AGC-25	25	35	62	54	27	40	20	48	6,6	18	26	М8	0,66	
AGC-30	30	40	67	60	30	50	25	53	6,6	18	29	М8	0,95	
AGC-40	40	52	87	76	39	60	30	69	8,4	22	38	М10	1,82	
AGC-50	50	62	103	92	47	70	35	82	10,5	26	46	M12	2,52	

Bestellbeispiel:


AGC -

121-

C = Linearkugelhülse (s. S. 21) FMT = Lineargleitlager (s. S. 28)

Wellendurchmesser Lineargehäuse, geschlossen, kompakt

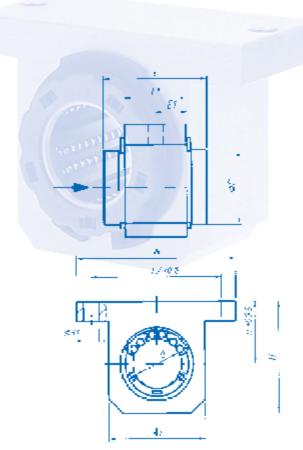
- Tragzahlen entsprechen der Lagerspezifikation
- Befestigungsschrauben DIN 912-8.8, Federring DIN 7980
- Gewichtsangabe mit Kugelhülse

Tandem geschlossen Kompaktausführung Schmierbohrung M8 x 1

	Abm	essunge		Gewicht										
Artikel-Nr.	Zd	∴* D	Α	Н	h	L	E1	E2	E3	d1	N1	N2	М	(kg)
TAGC-12	12	19	40	33	17	60	35	29	30,0	4,3	11	16	M5	0,18
TAGC-16	16	24	45	38	19	65	40	34	32,5	4,3	11	18	M5	0,27
TAGC-20	20	28	53	45	23	65	45	40	32,5	5,3	13	22	М6	0,32
TAGC-25	25	35	62	54	27	85	55	48	42,5	6,6	18	26	М8	0,66
TAGC-30	30	40	67	60	30	105	70	53	52,5	6,6	18	29	М8	0,95
TAGC-40	40	52	87	76	39	125	85	69	62,5	8,4	22	38	М10	1,82
TAGC-50	50	62	103	92	47	145	100	82	72,5	10,5	26	46	M12	2,52

Bestellbeispiel:

TAGC -


121-

C = Linearkugelhülse (s. S. 21) FMT = Lineargleitlager (s. S. 28)

Wellendurchmesser

Tandemgehäuse, geschlossen, kompakt

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Befestigungsschrauben DIN 912-8.8, Federring DIN 7980
- Gewichtsangabe mit Kugelhülse

Standard geschlossen beidseitig integriert gedichtet

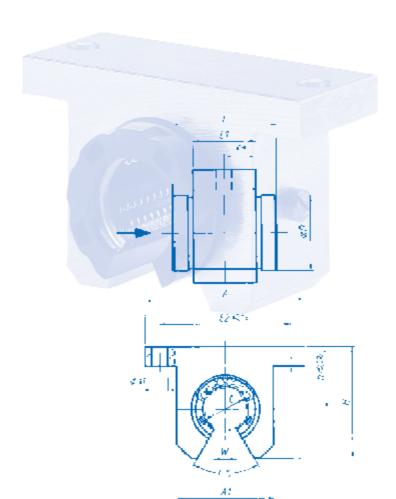
	Abmessungen in mm													
Artikel-Nr.	₿ď		h	Н	A	A1	E1	E2	L	L1	∴"d1	(kg)		
ALGS-12	12	22	18	35	52	30	10	42	32	20	5,3	0,09		
ALGS-16	16	26	22	40,5	56	34	11	46	36	22	5,3	0,12		
ALGS-20	20	32	25	48,0	70	40	14	58	45	28	6,4	0,25		
ALGS-25	25	40	30	58,0	80	50	20	68	58	40	6,4	0,49		
ALGS-30	30	47	35	67,0	88	58	24	76	68	48	6,4	0,78		
ALGS-40	40	62	45	85,0	108	74	28	94	80	56	8,4	1,28		
ALGS-50	50	75	50	100	135	96	36	116	100	72	10,5	1,70		

Bestellbeispiel:

ALGS -

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22) V = Linearkugellager Vollstahl (s. S. 23)


KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

Wellendurchmesser Lineargehäuse, Standard, geschlossen

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Standard offen beidseitig integriert gedichtet Schmierung und Fixierung über Schmiernippel Schlitzschraube

	Abme	Gewicht												
Artikel-Nr.	⊘d	Ø D	h	Н	A	A1	E1	E2	L	L1	W	S	(°)	(kg)
ALGS-OP-12	12	22	18	28	52	30	10	42	32	20	7	5,3	60	0,09
ALGS-OP-16	16	26	22	33,5	56	34	11	46	36	22	9,4	5,3	60	0,12
ALGS-OP-20	20	32	25	42	70	40	14	58	45	28	10	6,4	60	0,25
ALGS-OP-25	25	40	30	51	80	50	20	68	58	40	12,5	6,4	60	0,49
ALGS-OP-30	30	47	35	60	88	58	24	76	68	48	12,5	6,4	60	0,78
ALGS-OP-40	40	62	45	77	108	74	28	94	80	56	16,8	8,4	60	1,28
ALGS-OP-50	50	75	50	93	135	96	36	116	100	72	21	10,5	60	1,70

Bestellbeispiel:

ALGS-OP - Ø -

= Linear<mark>kugellager</mark>

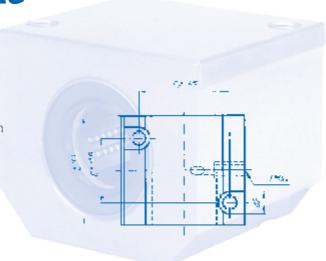
Winkelfehlerausgleich/

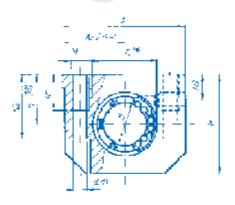
hohe Tragzahl (s. S. 27)
= Linearkugellager Standard (s. S. 22)
= Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard

mit Winkelfehlerausgleich (s. S. 26)
FM = Lineargleitlager selbstschmierend (s. S. 29)

= Lineargleitlager Keramik


Wellendurchmesser


Lineargehäuse, Standard, offen

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Lineargehäuse-Einheit

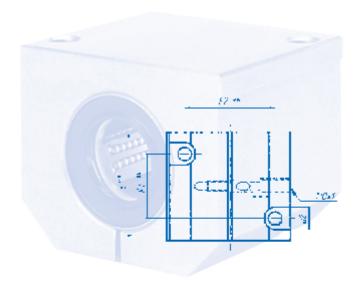
Einzel geschlossen beidseitig integriert gedichtet Schmierbohrung M8 x1

	Abmessungen in mm														Gewicht
Artikel-Nr.	Ød	. ĕ D	A	Н	h	L	N1	N2	N3	E1	E2	∴*d1	d2	М	(kg)
AG-08	8	16	35	28	13	32	10	14	8	20	25	3,3	6	M4	0,07
AG-12	12	22	43	35	18	39	13	25	10	23	32	4,2	8	M5	0,13
AG-16	16	26	53	42	22	43	13	30	12	26	40	5,2	10	М6	0,20
AG-20	20	32	60	50	25	54	18	34	13	32	45	6,8	11	M8	0,34
AG-25	25	40	78	60	30	67	22	40	15	40	60	8,6	15	M10	0,65
AG-30	30	47	87	70	35	79	22	48	16	45	68	8,6	15	M10	0,97
AG-40	40	62	108	90	45	91	26	60	20	58	86	10,3	18	M12	1,80

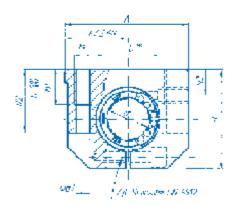
Bestellbeispiel:

AG -

5 -



Vorsatzdichtung


- = Linearkugellager Winkelfehlerausgleich / hohe Tragzahl (s. S. 27) = Linearkugellager Standard (s. S. 22)
- V = Linearkugellager Vollstahl (s. S. 23)
- KS = Linearkugellager Standard
 - mit Winkelfehlerausgleich (s. S. 26)
- FM = Lineargleitlager selbstschmierend (s. S. 29)
- L = Lineargleitlager Keramik

Wellendurchmesser Lineargehäuse, Einzel, geschlossen

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Einzel geschlossen Radialluft einstellbar beidseitig integriert gedichtet Schmierbohrung M8 x1

	Abme	Abmessungen in mm													
Artikel-Nr.	∴"d	Ø D	Α	Н	h	L	N1	N2	N3	E1	E2	∛d1	d2	М	(kg)
AG-AJ-08	8	16	35	28	13	32	10	14	8	20	25	3,3	6	M4	0,07
AG-AJ-12	12	22	43	35	18	39	11	25	10	23	32	4,2	8	M5	0,13
AG-AJ-16	16	26	53	42	22	43	13	30	12	26	40	5,2	10	М6	0,20
AG-AJ-20	20	32	60	50	25	54	18	34	13	32	45	6,8	11	М8	0,34
AG-AJ-25	25	40	78	60	30	67	22	40	15	40	60	8,6	15	M10	0,65
AG-AJ-30	30	47	87	70	35	79	22	48	16	45	68	8,6	15	M10	0,97
AG-AJ-40	40	62	108	90	45	91	26	60	20	58	86	10,3	18	M12	1,80

Bestellbeispiel:

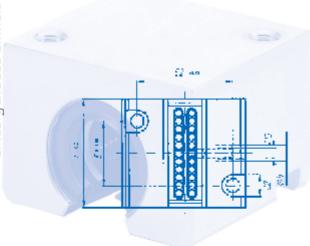
AG-AJ -

(2) -

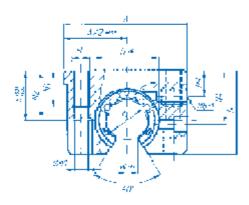
5 -

Vorsatzdichtung

- = Linearkugellager Winkelfehlerausgleich / hohe Tragzahl (s. S. 27) = Linearkugellager Standard (s. S. 22)
- V = Linearkugellager Vollstahl (s. S. 23)
- KS = Linearkugellager Standard
- mit Winkelfehlerausgleich (s. S. 26) FM = Lineargleitlager selbstschmierend (s. S. 29)
- L = Lineargleitlager Keramik


Wellendurchmesser

Lineargehäuse, Einzel, geschlossen, Radialluft einstellbar


- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

AG-OP

Lineargehäuse-Einheit

Einzel offen beidseitig integriert gedichtet Schmierbohrung M8 x1

	Abr	nessu	ıngen	in m	m												Gewicht
Artikel-Nr.	∴*d	:.* D	A	H	h	L	N1	N2	N3	N4	E1	E2	Ød1	d2	М	W	(kg)
AG-OP-12	12	22	43	28	18	39	11	23,5	8	16,65	23	32	4,2	8	M5	7,0	0,11
AG-OP-16	16	26	53	35	22	43	13	30	12	22,00	26	40	5,2	10	М6	9,4	0,17
AG-OP-20	20	32	60	42	25	54	18	34	13	25,00	32	45	6,8	11	M8	10,2	0,30
AG-OP-25	25	40	78	51	30	67	22	40	15	31,50	40	60	8,6	15	М10	12,5	0,57
AG-OP-30	30	47	87	60	35	79	22	48	16	33,00	45	68	8,6	15	M10	13,9	0,86
AG-0P-40	40	62	108	77	45	91	26	60	20	43,50	58	86	10,3	18	M12	18	1,60

Bestellbeispiel:

AG-OP -

5 -

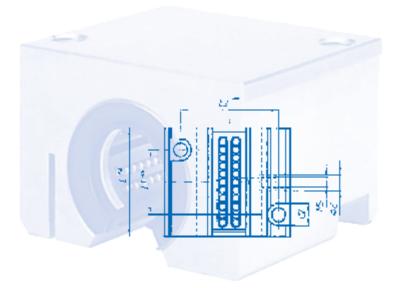
Vorsatzdichtung

5 = Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

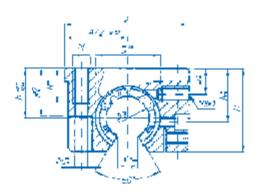
K = Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)


FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik


Wellendurchmesser

Lineargehäuse, Einzel, offen

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Einzel offen Radialluft einstellbar beidseitig integriert gedichtet Schmierbohrung M8 x1

Artikel-Nr.	Abm ∴d		igen i H	n mm	A	L	N1	N2	N3	N4	E1	E2	:2d1	d2	М	w	Gewicht (kg)
AG-OPAJ-12	12	22	28	18	43	39	11	25	8	16,65	23	32	4,2	8	M5	7,0	0,11
AG-OPAJ-16	16	26	35	22	53	43	13	30	12	22,00	26	40	5,2	10	М6	9,4	0,17
AG-OPAJ-20	20	32	42	25	60	54	18	34	13	25,00	32	45	6,8	11	М8	10,2	0,30
AG-OPAJ-25	25	40	51	30	78	67	22	40	15	31,50	40	60	8,6	15	М10	12,5	0,57
AG-OPAJ-30	30	47	60	35	87	79	22	48	16	33,00	45	68	8,6	15	M10	13,9	0,86
AG-OPAJ-40	40	62	77	45	108	91	26	60	20	43,50	58	86	10,3	18	M12	18,0	1,60

Bestellbeispiel:

AG-OPAJ - Ø -

5 -

Vorsatzdichtung

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

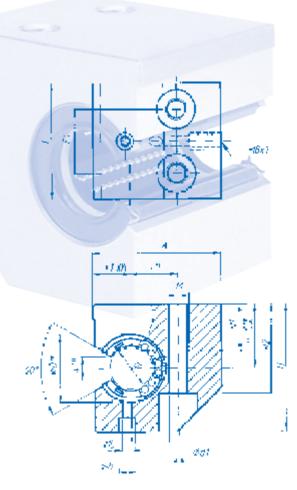
K = Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)

= Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik


Wellendurchmesser

Lineargehäuse, Einzel, offen, Radialluft einstellbar

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

seitlich offen beidseitig integriert gedichtet

	Abme	ssunge	n in m	m											Gewicht
Artikel-Nr.	∴*d	Ø D	Α	A1	Н	h	E1	E2	L	∛d1	М	N1	N2	W	(kg)
AGS-20	20	32	60	17	60	30	30	22	54	8,6	M10	22	42	10,2	0,42
AGS-25	25	40	75	21	72	35	36	28	67	10,3	M12	26	50	12,5	0,80
AGS-30	30	47	86	25	82	40	42	34	79	13,5	M16	34	55	13,9	1,20
AGS-40	40	62	110	32	100	45	48	43	91	17,5	M20	43	67	18,0	2,00

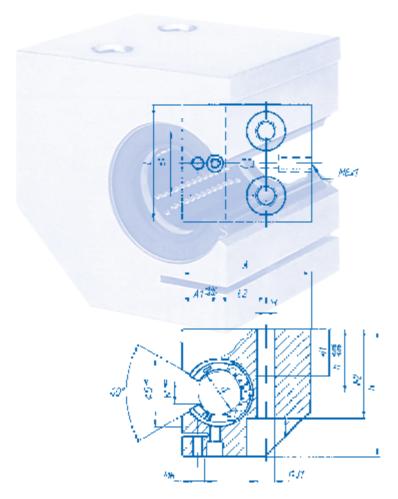
AGS -

5 -Vorsatzdichtung

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

= Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)


KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

Wellendurchmesser Lineargehäuse, seitlich offen

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

seitlich offen Radialluft einstellbar beidseitig integriert gedichtet

	Abm	iessun	gen in	mm											Gewicht
Artikel-Nr.	∴*d	:.* D	A	A1	Н	h	E1	E2	L	∴"d1	М	N1	N2	W	(kg)
AGS-AJ-20	20	32	60	17	60	30	30	22	54	8,6	M10	22	42	10,2	0,42
AGS-AJ-25	25	40	75	21	72	35	36	28	67	10,3	M12	26	50	12,5	0,80
AGS-AJ-30	30	47	86	25	82	40	42	34	79	13,5	M16	34	55	13,9	1,20
AGS-AJ-40	40	62	110	32	100	45	48	43	91	17.5	M20	43	67	18.0	2.00

Bestellbeispiel:

Ø-

AGS-AJ -

5 -

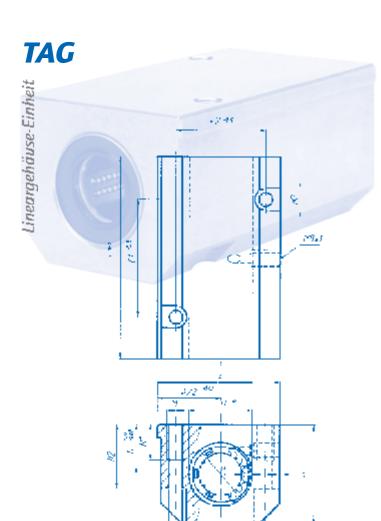
Vorsatzdichtung

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)

= Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)


FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

Wellendurchmesser

Lineargehäuse, seitlich offen, Radialluft einstellbar

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Tandem geschlossen beidseitig integriert gedichtet Schmierbohrung M8 x1

	Abm	essunge	n in mm	,										Gewicht
Artikel-Nr.	∴≛d	: ∄ D	Α	Н	h	L	N1	N2	E1	E2	⊘d1	d2	М	(kg)
TAG-08	8	16	35	28	13	62	13	14	35	25	4,2	8	M5	0,15
TAG-12	12	22	43	35	18	76	13	25	40	30	5,2	10	М6	0,27
TAG-16	16	26	53	42	22	84	13	30	45	36	5,2	10	М6	0,41
TAG-20	20	32	60	50	25	104	18	34	55	45	6,8	11	М8	0,72
TAG-25	25	40	78	60	30	130	22	40	70	54	8,6	15	M10	1,35
TAG-30	30	47	87	70	35	152	26	48	85	62	10,3	18	M12	2,01
TAG-40	40	62	108	90	45	176	34	60	100	80	14,25	20	M16	3,67

TAG -

120-

5 -

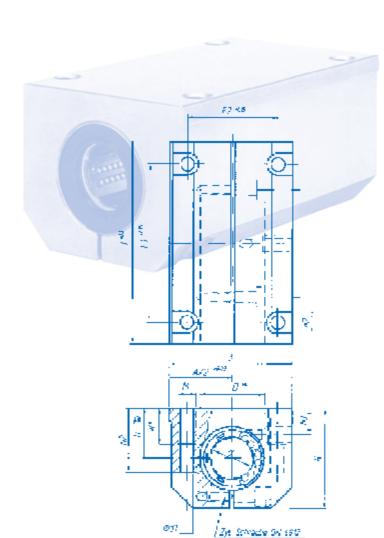
Vorsatzdichtung

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)


FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

Wellendurchmesser

Lineargehäuse, Tandem, geschlossen, zwei Befestigungsbohrungen

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Tandem geschlossen Radialluft einstellbar beidseitig integriert gedichtet Schmierbohrung M8 x1

	Abm	essun	gen in	mm										Gewicht
Artikel-Nr.	∴"d	* D	A	Н	h	L	N1	N2	E1	E2	∛d1	d2	М	(kg)
TAG-AJ-08	8	16	35	28	13	62	11	14	50	25	4,2	8	M5	0,15
TAG-AJ-12	12	22	43	35	18	76	11	25	56	32	4,2	8	M5	0,27
TAG-AJ-16	16	26	53	42	22	84	13	30	64	40	5,2	10	М6	0,41
TAG-AJ-20	20	32	60	50	25	104	18	34	76	45	6,8	11	M8	0,72
TAG-AJ-25	25	40	78	60	30	130	22	40	94	60	8,6	15	M10	1,35
TAG-AJ-30	30	47	87	70	35	152	22	48	106	68	8,6	15	М10	2,01
TAG-AJ-40	40	62	108	90	45	176	26	60	124	86	10,3	18	M12	3,67

Bestellbeispiel:

TAG-AJ -

(2) -

5 -

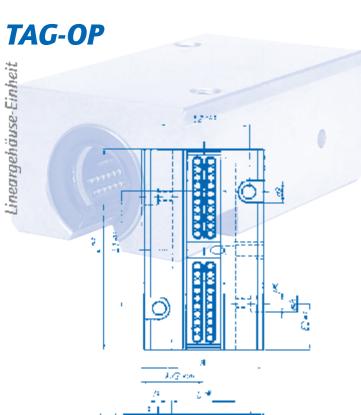
Vorsatzdichtung

= Linea<mark>rkugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

= Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)

= Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)


FM = Lineargleitlager selbstschmierend (s. S. 29)

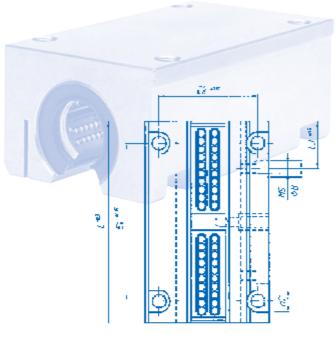
L = Lineargleitlager Keramik

Wellendurchmesser

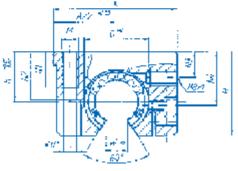
Lineargehäuse, Tandem, geschlossen, Radialluft einstellbar

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Tandem offen beidseitig integriert gedichtet Schmierbohrung M8 x1


	Abr	nessi	ıngen	in n	ım												Gewicht
Artikel-Nr.	∴*d	:.*⊅	A	H	h	L	N1	N2	N4	E1	E2	E3	∴*d1	d2	М	W	(kg)
TAG-OP-12	12	22	43	30	18	76	13	25	16,65	40	30	19,5	5,2	10	М6	7,0	0,22
TAG-OP-16	16	26	53	35	22	84	13	30	22,00	45	36	21,5	5,2	10	М6	9,4	0,34
TAG-OP-20	20	32	60	42	25	104	18	34	25,00	55	45	27,0	6,8	11	M8	10,2	0,62
TAG-OP-25	25	40	78	51	30	130	22	40	31,50	70	54	33,5	8,6	15	M10	12,9	1,17
TAG-OP-30	30	47	87	60	35	152	26	48	33,00	85	62	39,5	10,3	18	M12	14,4	1,68
TAG-OP-40	40	62	108	77	45	176	34	60	43,50	100	80	45	14,25	20	M16	18,2	3,15

Bestellbeispiel:


TAG-OP -(2) -5 -**Vorsatzdichtung** = Linearkugellager Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27) = Linearkugellager Standard (s. S. 22) = Linearkugellager Vollstahl (s. S. 23) = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26) = Lineargleitlager selbstschmierend (s. S. 29) = Lineargleitlager Keramik

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Wellendurchmesser Lineargehäuse, Tandem, offen, zwei Befestigungsbohrungen

Tandem offen Radialluft einstellbar beidseitig integriert gedichtet Schmierbohrung M8 x1

			ngen														Gewicht
Artikel-Nr.	⊘d	⊗` D	Α	Н	h	L	N1	N2	N4	E1	E2	E3	∴*d1	d2	М	W	(kg)
TAG-OPAJ-12	12	22	43	30	18	76	11	25	16,65	56	32	19,5	4,2	8	M5	7	0,22
TAG-OPAJ-16	16	26	53	35	22	84	13	30	22,00	64	40	21,5	5,2	10	М6	9,4	0,34
TAG-OPAJ-20	20	32	60	42	25	104	18	34	25,00	76	45	27,0	6,8	11	М8	10,2	0,62
TAG-OPAJ-25	25	40	78	51	30	130	22	40	31,50	94	60	33,5	8,6	15	M10	12,9	1,17
TAG-OPAJ-30	30	47	87	60	35	152	22	48	33,00	106	68	39,5	8,6	15	M10	14,4	1,68
TAG-OPAJ-40	40	62	108	77	45	176	26	60	43,50	124	86	45,5	10,3	18	M12	18,2	3,15

Bestellbeispiel:

TAG-OPAJ - 12 -

5 -

Vorsatzdichtung

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

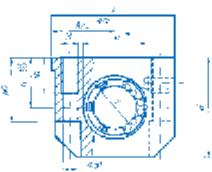
= Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

= Lineargleitlager Keramik


Wellendurchmesser

Lineargehäuse, Tandem, offen, Radialluft einstellbar

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Tandem geschlossen vier Befestigungsbohrungen beidseitig integriert gedichtet Schmierbohrung M8 x1

	Abn	essung	gen in i	mm										Gewicht
Artikel-l	lr. ∴³d	:.* D	Α	Н	h	L	N1	N2	E1	E2	: ⊘d1	d2	М	(kg)
TAGI-08	8	16	35	28	13	62	11	14	35	25	4,2	8	M5	0,15
TAGI-12	12	22	43	35	18	76	11	25	56	32	4,2	8	M5	0,27
TAGI-16	16	26	53	42	22	84	13	30	64	40	5,2	10	М6	0,41
TAGI-20	20	32	60	50	25	104	18	34	76	45	6,8	11	М8	0,72
TAGI-25	25	40	78	60	30	130	22	40	94	60	8,6	15	M10	1,35
TAGI-30	30	47	87	70	35	152	22	48	106	68	8,6	15	M10	2,01
TAGI-40	40	62	108	90	45	176	26	60	124	86	10,3	18	M12	3,67

TAGI -

(Z) -

S -

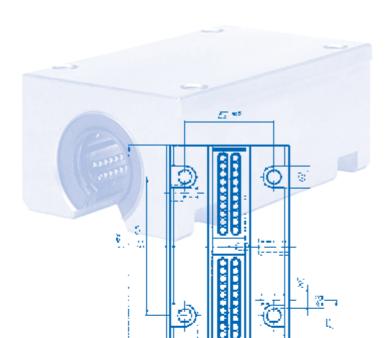
Vorsatzdichtung

5 = Linearkugellager Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

V = Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)


FM= Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

Wellendurchmesser

Lineargehäuse, Tandem, geschlossen, vier Befestigungsbohrungen

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Tandem offen vier Befestigungsbohrungen beidseitig integriert gedichtet Schmierbohrung M8 x1

<u> </u>	
	1000
	<u>N</u>
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	

Artikel-Nr.	Abn ∷*d	iessun ØD	gen in A	mm H	h	L	N1	N2	N4	E1	E2	E3	:⊘d1	d2	М	W	Gewicht (kg)
TAGI-OP-12	12	22	43	30	18	76	11	25	16,65	56	32	19,5	4,2	8	M5	7,0	0,22
TAGI-OP-16	16	26	53	35	22	84	13	30	22,00	64	40	21,5	5,2	10	М6	9,4	0,34
TAGI-OP-20	20	32	60	42	25	104	18	34	25,00	76	45	27,0	6,8	11	М8	10,2	0,62
TAGI-OP-25	25	40	78	51	30	130	22	40	31,50	94	60	33,5	8,6	15	M10	12,9	1,17
TAGI-OP-30	30	47	87	60	35	152	22	48	33,00	106	68	39,5	8,6	15	M10	14,4	1,68
TAGI-OP-40	40	62	108	77	45	176	34	60	43.50	124	86	45.5	10.3	18	M12	18.2	3.15

Bestellbeispiel:

TAGI-OP - 120 -

5 -

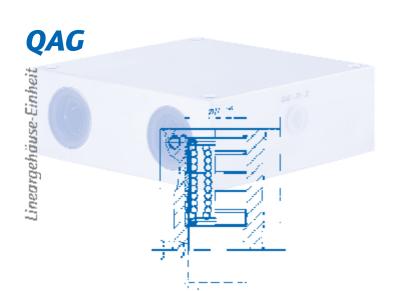
Vorsatzdichtung

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

= Linearkugellager Standard (s. S. 22)

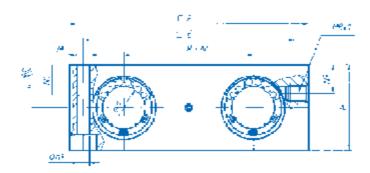
= Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)


FM = Lineargleitlager selbstschmierend (s. S. 29)

= Lineargleitlager Keramik

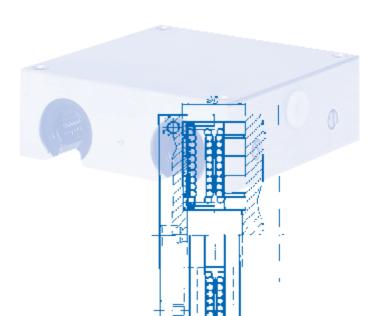
Wellendurchmesser


Lineargehäuse, Tandem, offen, vier Befestigungsbohrungen

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

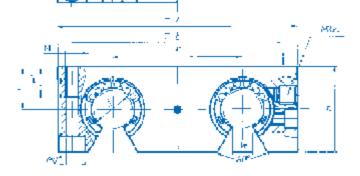
Quadro geschlossen beidseitig integriert gedichtet Schmierbohrung M8 x1 Sonderbauformen auf Anfrage

	Abmes	ssungen i	n mm									Gewicht
Artikel-Nr.	∴*d	.∄ D	Α	Н	h	E	N1	N3	R	∴*d1	М	(kg)
QAG-08	8	16	65	23	11,5	55	11	8	32	4,3	M5	0,23
QAG-12	12	22	85	32	16	73	13	13	42	5,3	M6	0,52
QAG-16	16	26	100	36	18	88	13	15	54	5,3	М6	0,78
QAG-20	20	32	130	46	23	115	18	19	72	6,8	M8	1,74
QAG-25	25	40	160	56	28	140	22	24	88	9	M10	3,13
QAG-30	30	47	180	64	32	158	26	27	96	10,5	M12	4,43
QAG-40	40	62	230	80	40	202	34	35	122	13,5	М16	8,70


QAG - Ø -

S - **V**Vorsatzdichtung
S = Linearkugellager

- Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)
- K = Linearkugellager Standard (s. S. 22)
- V = Linearkugellager Vollstahl (s. S. 23)
- S = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)
- FM = Lineargleitlager selbstschmierend (s. S. 29)
- L = Lineargleitlager Keramik


- Tragzahlen entsprechen der Lagerspezifikation (x 4)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Wellendurchmesser Lineargehäuse, Quadro, geschlossen

Quadro offen beidseitig integriert gedichtet Schmierbohrung M8 x1 Sonderbauformen auf Anfrage

Artikel-Nr.	Abme ∴*d	essungei ::*D	n in mm A	н	h	E	N1	R	W	∵d1	М	Gewicht (kg)
QAG-OP-12	12	22	85	30	18	73	13	42	7,0	5,3	M6	0,45
QAG-OP-16	16	26	100	35	22	88	13	54	9,4	5,3	M6	0,73
QAG-OP-20	20	32	130	42	25	115	18	72	10,2	6,8	M8	1,48
QAG-OP-25	25	40	160	51	30	140	22	88	12,9	9	M10	2,68
QAG-OP-30	30	47	180	60	35	158	26	96	13,9	10,5	M12	3,95
OAG-OP-40	40	62	230	77	45	202	34	122	18.2	13.5	M16	8.12

QAG-OP - 12 -

5 -

Vorsatzdichtung

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

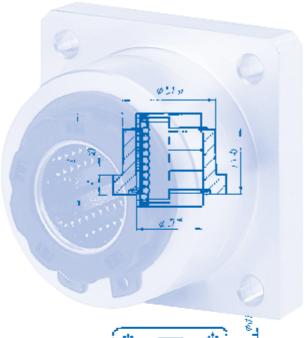
= Linearkugellager Standard (s. S. 22)

= Linearkugellager Vollstahl (s. S. 23)

= Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik


Wellendurchmesser

Lineargehäuse, Quadro, offen

- Tragzahlen entsprechen der Lagerspezifikation (x 4)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Lineargehäuse-Einheit

Einzel Flansch beidseitig integriert gedichtet

Artikel-Nr.	Abmessun %d	gen in mi	m ∴ŏD1	A	L	L1	V	E	.≛d1	Gewicht
Arlikei-Nr.	×.u	x. D		A	L	LI	•	E	··ui	(kg)
FAG-12	12	22	32	40	32	22	6	30	5,5	0,12
FAG-16	16	26	38	50	36	24	8	35	5,5	0,17
FAG-20	20	32	46	60	45	30	10	42	6,6	0,33
FAG-25	25	40	58	70	58	42	12	54	6,6	0,68
FAG-30	30	47	66	80	68	50	14	60	9,0	1,03
FAG-40	40	62	90	100	80	59	16	78	11,0	2,00

Bestellbeispiel:

120-

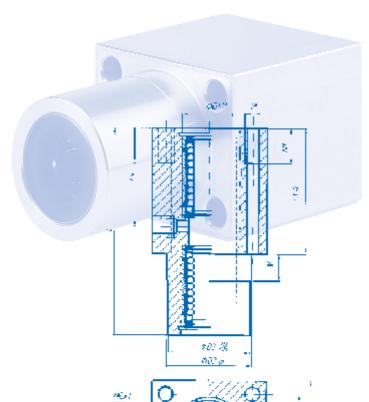
FAG -

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/

hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

V = Linearkugellager Vollstahl (s. S. 23)


KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

= Lineargleitlager Keramik

Wellendurchmesser Lineargehäuse, Einzel, Flansch

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

Tandem Flansch beidseitig integriert gedichtet Schmierbohrung M8 x1

1 V 7/// /// 1
A 2

	Abm	essung	gen in	mm													Gewicht
Artikel-Nr.	∴"d	∴*D1	⊘D2	D3	Α	В	E1	E2	E3	E4	L	L1	Ød1	М	N1	V	(kg)
FTAG-12	12	22	30	30	42	34	32	24	19	36	76	46	5,3	М6	13	10	0,20
FTAG-16	16	26	35	35	50	40	38	28	22	40	84	50	6,6	М8	18	10	0,32
FTAG-20	20	32	42	42	60	50	45	35	27	50	104	60	8,4	M10	22	10	0,55
FTAG-25	25	40	52	52	74	60	56	42	32	63	130	73	10,5	M12	26	10	1,17
FTAG-30	30	47	61	61	84	70	64	50	37	74	152	82	13,5	M16	34	10	1,50

FTAG -

121-

5 -

Vorsatzdich tung

5 = Linearkugellager Winkelfehlerausgleich/

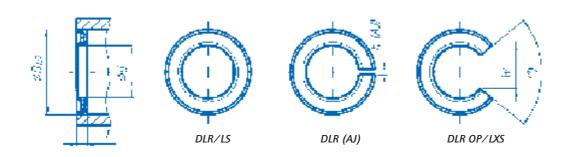
hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

V = Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)


L = Lineargleitlager Keramik

Wellendurchmesser Lineargehäuse, Tandem, Flansch

- Tragzahlen entsprechen der Lagerspezifikation (x 2)
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 472
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

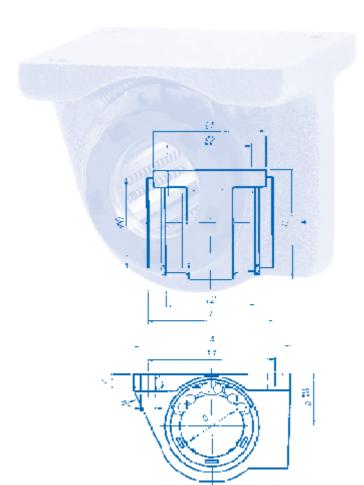
		essung tzdichtun			ellager und	Gleitlager			essung			rgleitlager Keramik
Artikel-Nr.	₽d	i ⊘ D	τ	h	W	(°)	Artikel-Nr.	∴*d	∴* D	τ	W	ິ(°)
DLR-12	12	22	3,0	1,5	7,5	78	LS/LXS-12	12	20	4,2	7,5	78
DLR-16	16	26	3,0	1,5	10,0	78	LS/LXS-16	16	23	4,4	11,0	78
DLR-20	20	32	4,0	2,0	10,0	60	LS/LXS-20	20	29	5,2	12,1	60
DLR-25	25	40	4,0	2,0	12,5	60	LS/LXS-25	25	35	6,1	14,2	60
DLR-30	30	47	5,0	2,0	12,5	50	LS/LXS-30	30	41,5	7,0	17,5	50
DLR-40	40	62	5,0	3,0	16,8	50	LS/LXS-40	40	56,5	7,9	21,4	50

LS = geschlossene Version

LXS = offene Version

Bestellbeispiel:

DLR -


AJ = Radialluft einstellbar / OP = offen

Wellendurchmesser

Ø-

Doppellippendichtring

Passende Außen- und Innensicherungsringe DIN 471/472 ab Lager erhältlich.

geschlossen beidseitig integriert gedichtet

	Abme	ssunger	in mm										Gewicht
Artikel-Nr.	∴"d	∴×́D	Α	Н	h	L	L1	L2	E1	E2	<i>∄d1</i>	V	(kg)
GG-08	8	16	32	28	15	25	28	14	25 ^{±0,15}	20 ^{±0,15}	3,3	5,0	0,10
GG-12	12	22	42	35	18	32	32	20	32 ^{±0,15}	23 ^{±0,15}	4,3	5,5	0,12
GG-16	16	26	50	42	22	36	35	22	40 ^{±0,15}	26 ^{±0,15}	4,3	6,5	0,19
GG-20	20	32	60	50	25	45	42	28	$45^{\pm0,15}$	32 ^{±0,15}	4,3	8,0	0,38
GG-25	25	40	74	60	30	58	54	40	60 ^{±0,15}	40 ^{±0,15}	5,3	9,0	0,70
GG-30	30	47	84	70	35	68	60	48	68 ^{±0,20}	45 ^{±0,20}	6,4	10,0	1,10
GG-40	40	62	108	90	45	80	78	56	86 ^{±0,20}	58 ^{±0,20}	8,4	12,0	2,30
GG-50	50	75	130	105	50	100	70	72	108 ^{±0,20}	50 ^{±0,20}	8,4	14,0	3,45
GG-60	60	90	160	125	60	125	92	95	132 ^{±0,25}	65 ^{±0,25}	10,5	15,0	6,77
GG-80	80	120	200	170	80	165	122	125	170 ^{±0,50}	90 ^{±0,50}	13,0	22,0	15,50

121-

GG -

= Linear<mark>kugellager</mark>

Winkelfehlerausgleich/hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)
 V = Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard

mit Winkelfehlerausgleich (s. S. 26)

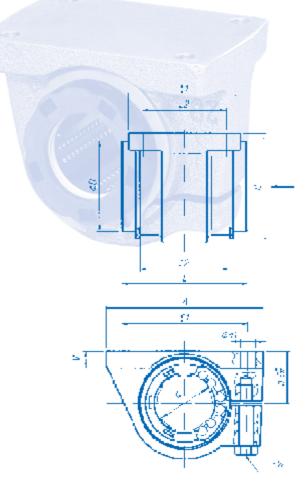
FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

- Tragzahlen entsprechen der Lagerspezifikation

- Gewichtsangabe mit Standard-Linearkugellager

- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471


- Befestigungsschrauben DIN 912 - 8.8, Federring DIN 7980

Wellendurchmesser

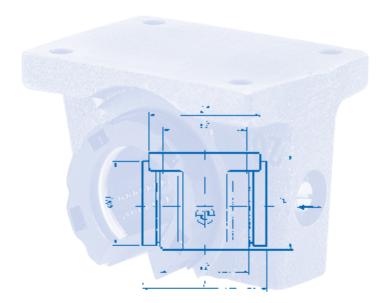
Lineargehäuse, Grauguss

GG-AJ

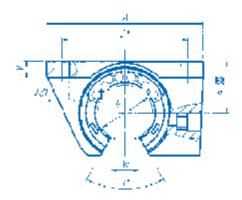
geschlossen Radialluft einstellbar beidseitig integriert gedichtet

	Abmes	sungen	in mm	1										Gewicht
Artikel-Nr.	∴ăd	Ø D	A	h	Н	L	L1	L2	E1	E2	∛d1	V	SW	(kg)
GG-AJ-08	8	16	32	15	28	25	28	14	25 ^{±0,15}	20 ^{±0,15}	3,3	5,0	5,5	0,10
GG-AJ-12	12	22	42	18	35	32	32	20	32 ^{±0,15}	23 ^{±0,15}	4,3	5,5	7,0	0,12
GG-AJ-16	16	26	50	22	42	36	35	22	40 ^{±0,15}	26 ^{±0,15}	4,3	6,5	7,0	0,19
GG-AJ-20	20	32	60	25	50	45	42	28	45 ^{±0,15}	32 ^{±0,15}	4,3	8,0	7,0	0,38
GG-AJ-25	25	40	74	30	60	58	54	40	60 ^{±0,15}	40 ^{±0,15}	5,3	9,0	8,0	0,70
GG-AJ-30	30	47	84	35	70	68	60	48	68 ^{±0,20}	45 ^{±0,20}	6,4	10,0	10,0	1,10
GG-AJ-40	40	62	108	45	90	80	78	56	86 ^{±0,20}	58 ^{±0,20}	8,4	12,0	13,0	2,30
GG-AJ-50	50	75	130	50	105	100	70	72	108 ^{±0,20}	50 ^{±0,20}	8,4	14,0	13,0	53,45
GG-AJ-60	60	90	160	60	125	125	92	95	132 ^{±0,25}	65 ^{±0,25}	10,5	15,0	17,0	6,77
GG-AJ-80	80	120	200	80	170	165	122	125	170 ^{±0,50}	90 ^{±0,50}	13,0	22,0	19,0	15,50

Bestellbeispiel:


GG-AJ -

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/


- hohe Tragzahl (s. S. 27)

 K = Linearkugellager Standard (s. S. 22)
- V = Linearkugellager Vollstahl (s. S. 23)
- KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)
- FM = Lineargleitlager selbstschmierend (s. S. 29)
- L = Lineargleitlager Keramik
- Wellendurchmesser

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

offen beidseitig integriert gedichtet

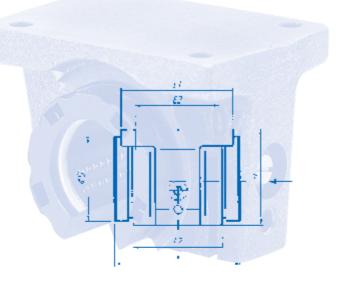
	Abmes	ssungen	in mn	1										Gewicht
Artikel-Nr.	∴≛d	h	Н	L	Α	L1	L2	E1	E2	∴"d1	V	W	(°)	(kg)
GG-OP-12	12	18	28	32	42	32	20	32 ^{±0,15}	23 ^{±0,15}	4,3	5,5	7	70	0,10
GG-OP-16	16	22	35	36	50	35	22	40 ^{±0,15}	26 ^{±0,15}	4,3	6,5	9,4	70	0,18
GG-OP-20	20	25	42	45	60	42	28	45 ^{±0,15}	32 ^{±0,15}	4,3	8,0	10,2	60	0,32
GG-OP-25	25	30	51	58	74	54	40	60 ^{±0,15}	40 ^{±0,15}	5,3	9,0	12,5	60	0,63
GG-OP-30	30	35	60	68	84	60	48	68 ^{±0,20}	45 ^{±0,20}	6,4	10,0	13,9	55	0,90
GG-OP-40	40	45	77	80	108	78	56	86 ^{±0,20}	58 ^{±0,20}	8,4	12,0	18,2	60	2,10
GG-OP-50	50	50	88	100	130	70	72	108 ^{±0,20}	50 ^{±0,20}	8,4	14,0	21,0	50	3,10
GG-OP-60	60	60	105	125	160	92	95	132 ^{±0,25}	65 ^{±0,25}	10,5	15,0	27,2	50	5,78
GG-OP-80	80	80	140	165	200	122	125	170 ^{±0,50}	90 ^{±0,50}	13,0	22,0	36,3	50	12,80

GG-OP -

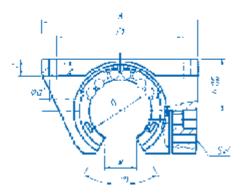
= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22) V = Linearkugellager Vollstahl (s. S. 23) KS = Linearkugellager Standard

mit Winkelfehlerausgleich (s. S. 26) FM = Lineargleitlager selbstschmierend (s. S. 29)


L = Lineargleitlager Keramik Wellendurchmesser

Lineargehäuse, offen, Grauguss


- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

GG-OPAJ

Lineargehäuse-Einheit

offen Radialluft einstellbar beidseitig integriert gedichtet

	Abm	essung	gen in	mm											Gewicht
Artikel-Nr.	Ød	h	Н	L	A	L1	L2	E1	E2	∴*d1	V	W	SW	(°)	(kg)
GG-OPAJ-12	12	18	28	32	42	32	20	32 ^{±0,15}	23 ^{±0,15}	4,3	5,5	7	2,5	70	0,10
GG-OPAJ-16	16	22	35	36	50	35	22	40 ^{±0,15}	26 ^{±0,15}	4,3	6,5	9,4	2,5	70	0,18
GG-OPAJ-20	20	25	42	45	60	42	28	45 ^{±0,15}	32 ^{±0,15}	4,3	8,0	10,2	2,5	60	0,32
GG-OPAJ-25	25	30	51	58	74	54	40	60 ^{±0,15}	40 ^{±0,15}	5,3	9,0	12,5	3,0	60	0,63
GG-OPAJ-30	30	35	60	68	84	60	48	68 ^{±0,20}	45 ^{±0,20}	6,4	10,0	13,9	3,0	55	0,90
GG-OPAJ-40	40	45	77	80	108	78	56	86 ^{±0,20}	58 ^{±0,20}	8,4	12,0	18,2	4,0	60	2,10
GG-OPAJ-50	50	50	88	100	130	70	72	108 ^{±0,20}	50 ^{±0,20}	8,4	14,0	21,0	5,0	50	3,91
GG-OPAJ-60	60	60	105	125	160	92	95	132 ^{±0,25}	65 ^{±0,25}	10,5	15,0	27,2	5,0	50	7,79
GG-OPAJ-80	80	80	140	165	200	122	125	170 ^{±0,50}	90 ^{±0,50}	13,0	22,0	36,3	6,0	50	16,05

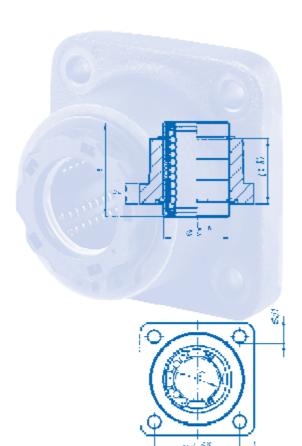
Bestellbeispiel:

GG-OPAJ - 12 -

= Linearkugellager Winkelfehlerausgleich/ hohe Tragzahl (s. S. 27)

- = Linearkugellager Standard (s. S. 22)
- = Linearkugellager Vollstahl (s. S. 23)
- KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)
- FM = Lineargleitlager selbstschmierend (s. S. 29) L = Lineargleitlager Keramik

Wellendurchmesser


- Befestigung des Lagers im Gehäuse, erfolgt über Axial-
 - Radialfixierschraube

- Tragzahlen entsprechen der Lagerspezifikation

- Gewichtsangabe mit Standard-Linearkugellager

- Befestigungsschrauben DIN 912 - 8.8, Federring DIN 7980

Lineargehäuse, offen, Radialluft einstellbar

Flansch beidseitig integriert gedichtet

	Abmessur	ngen in mm	,							Gewicht
Artikel-Nr.	∴ăd	.* D	A	L	L1	E	Ød1	v	W	(kg)
FGG-12	12	22	42	32	22	30 ^{±0,12}	5,5	6	10,0	0,14
FGG-16	16	26	50	36	24	35 ^{±0,12}	5,5	8	10,5	0,23
FGG-20	20	32	60	45	30	42 ^{±0,15}	6,6	10	13,5	0,38
FGG-25	25	40	74	58	42	54 ^{±0,15}	6,6	12	17,5	0,78
FGG-30	30	47	84	68	50	60 ^{±0,25}	9,9	14	21,0	1,23
FGG-40	40	62	108	80	59	78 ^{±0,25}	11,0	16	22,0	2,31
FGG-50	50	75	130	100	75	98 ^{±0,25}	11,0	18	14,0	3,91
FGG-60	60	90	160	125	99	120 ^{±0,50}	14,0	22	15,0	7,79
FGG-80	80	120	200	165	130	155 ^{±0,50}	14,0	26	20,0	16,05

FGG -

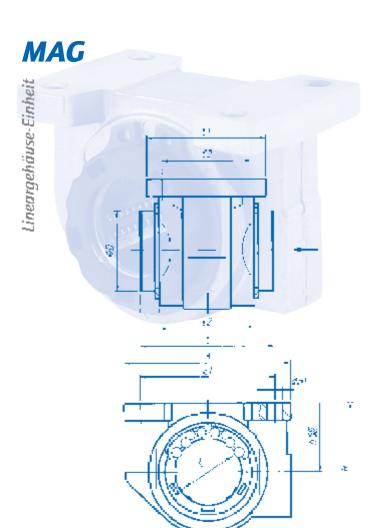
121-

5 = Linearkugellager Winkelfehlerausgleich/

hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

V = Linearkugellager Vollstahl (s. S. 23)


KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

Wellendurchmesser Lineargehäuse, Flansch, Grauguss

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

geschlossen beidseitig integriert gedichtet

	Abmes	ssungen ii	ı mm								Gewicht
Artikel-Nr.	:ĕd	ĕ₽	Α	h	Н	L	L1	L2	E1	E2	(kg)
MAG-12	12	22	42	18	34,0	32	32	20	32 ^{±0,15}	23 ^{±0,15}	0,06
MAG-16	16	26	50	22	41,0	36	35	22	40 ^{±015}	26 ^{±0,15}	0,08
MAG-20	20	32	60	25	47,5	45	42	28	45 ^{±0,15}	32 ^{±0,15}	0,16
MAG-25	25	40	74	30	60,0	58	54	40	60 ^{±0,20}	40 ^{±0,20}	0,31
MAG-30	30	47	84	35	67,0	68	60	48	68 ^{±0,20}	45 ^{±0,20}	0,45
MAG-40	40	62	108	45	87,0	80	78	56	86 ^{±0,20}	58 ^{±0,20}	0,81
MAG-50	50	75	130	50	98,0	100	70	72	108 ^{±0,20}	50 ^{±0,20}	1,65

Maß L = lagerabhängig

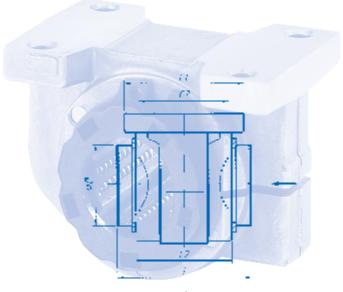
MAG -

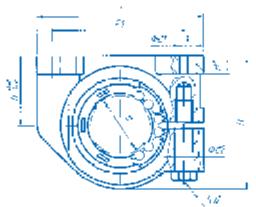
S
5 = Linearkugellager
Winkelfehlerausgleich/

hohe Tragzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

V = Linearkugellager Vollstahl (s. S. 23)


KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)


FM = Lineargleitlager selbstschmierend (s. S. 29)

L = Lineargleitlager Keramik

Wellendurchmesser

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

geschlossen Radialluft einstellbar beidseitig integriert gedichtet

	Abmes	sungen	in mm												Gewicht
Artikel-Nr.	∴" d	Ø D	Α	h	Н	H1	L	L1	L2	E1	E2	<i>3d1</i>	∴*d2	SW	(kg)
MAG-AJ-12	12	22	42	18	34,0	4,8	32	32	20	32 ^{±0,15}	23 ^{±0,15}	4,5	8	7	0,06
MAG-AJ-16	16	26	50	22	41,0	5,5	36	35	22	40 ^{±015}	26 ^{±0,15}	4,5	8	7	0,08
MAG-AJ-20	20	32	60	25	47,5	7,0	45	42	28	45 ^{±0,15}	32 ^{±0,15}	4,5	8	7	0,16
MAG-AJ-25	25	40	74	30	60,0	8,0	58	54	40	60 ^{±0,20}	40 ^{±0,20}	5,5	10	8	0,31
MAG-AJ-30	30	47	84	35	67,0	9,0	68	60	48	68 ^{±0,20}	45 ^{±0,20}	6,6	11	10	0,45
MAG-AJ-40	40	62	108	45	87,0	11,0	80	78	56	86 ^{±0,20}	58 ^{±0,20}	9,0	15	13	0,81
MAG-AJ-50	50	75	130	50	98,0	12,5	100	70	72	108 ^{±0,20}	50 ^{±0,20}	9,0	15	13	1,65

MAG-AJ - 12 -

= Linearkugellager Winkelfehlerausgleich/

hohe Tragzahl (s. S. 27)

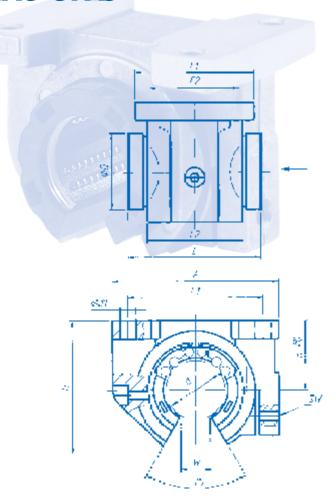
K = Linearkugellager Standard (s. S. 22)

V = Linearkugellager Vollstahl (s. S. 23)

KS = Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

FM = Lineargleitlager selbstschmierend (s. S. 29)

= Lineargleitlager


Wellendurchmesser

Lineargehäuse, geschlossen, Radialluft einstellbar, AL-D6

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Sicherungsringe nach DIN 471
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

MAG-OPAJ

Lineargehäuse-Einheit

offen Radialluft einstellbar beidseitig integriert gedichtet

	Abm	essung	gen in	mm											Gewicht
Artikel-Nr.	∴≛d	Ø D	Α	h	Н	E1	E2	L	L1	L2	SW	∴*d1	W	(°)	(kg)
MAG-OPAJ-12	12	22	42	18	34,0	32 ^{±0,15}	23 ^{±0,15}	32	32	20	2,0	4,5	7,0	70	0,06
MAG-OPAJ-16	16	26	50	22	41,0	40 ^{±0,15}	26 ^{±0,15}	36	35	22	2,5	4,5	9,4	70	0,08
MAG-OPAJ-20	20	32	60	25	47,5	45 ^{±0,15}	32 ^{±0,15}	45	42	28	2,5	4,5	10,2	60	0,16
MAG-OPAJ-25	25	40	74	30	60,0	60 ^{±0,20}	40 ^{±0,20}	58	54	40	3,0	5,5	12,5	60	0,31
MAG-OPAJ-30	30	47	84	35	67,0	68 ^{±0,20}	45 ^{±0,20}	68	60	48	3,0	6,6	13,9	55	0,45
MAG-OPAJ-40	40	62	108	45	87,0	86 ^{±0,20}	58 ^{±0,20}	80	78	56	4,0	9,0	18,2	60	0,81
MAG-OPAJ-50	50	75	130	50	98,0	108 ^{±0,20}	50 ^{±0,20}	100	70	72	4,0	9,0	21,0	8100	1,65

Bestellbeispiel:

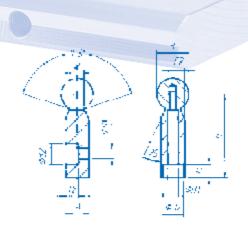
MAG-OPAJ - 12 -

= Linear<mark>kugellager</mark> Winkelfehlerausgleich/ hohe Tranzahl (s. S. 27)

K = Linearkugellager Standard (s. S. 22)

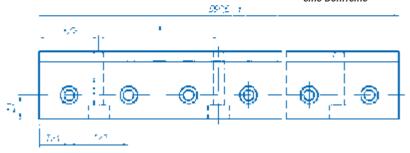
V = Linearkugellager Vollstahl (s. S. 23)

= Linearkugellager Standard mit Winkelfehlerausgleich (s. S. 26)

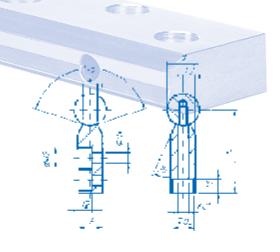

FM = Lineargleitlager selbstschmierend (s. S. 29)

= Lineargleitlager

Wellendurchmesser Lineargehäuse, offen, Radialluft einstellbar, AL-D6

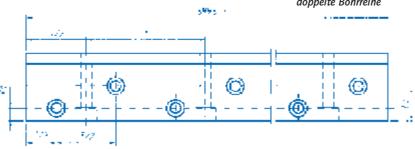

- Tragzahlen entsprechen der Lagerspezifikation
- Gewichtsangabe mit Standard-Linearkugellager
- Befestigung des Lagers im Gehäuse, erfolgt über Axial-Radialfixierschraube
- Befestigungsschrauben DIN 912 8.8, Federring DIN 7980

flach
Al-Legierung
600 mm lang
eine Bohrreihe


Oben aufgeführte Unterstützungen sind als Tragschienen,
 Welle montiert auf Unterstützung, nach Vorgabe lieferbar

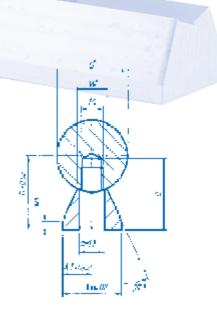
	Abmess	ungen in	mm									Gewicht
Artikel-Nr.	∴*d	Α	h	E1	E2	W	ød1	⊘d2	t1	t2	T	(kg)
WUF-20	20	15	52	15	7,5	8,3	6,6	11	8,5	8.5	100	1,10
WUF-25	25	20	62	18	10,0	10,8	9,0	15	15	11.0	120	1,50
WUF-30	30	25	72	21	12,5	11,0	11,0	18	15,3	13.5	150	2,10
WUF-40	40	30	88	25	15,0	15,0	14,0	20	19	16.0	200	3,00
WUF-50	50	35	105	30	17,5	19,0	16,0	24	21,5	18.5	200	4,20

- Zugehörige Präzisionsstahlwellen Kapitel V



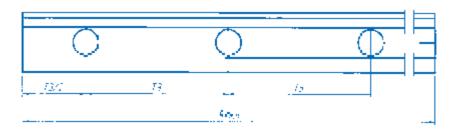
Wellenunterstützung

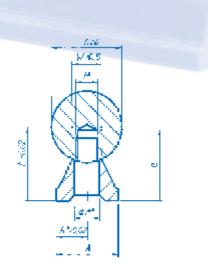
flach
Al-Legierung
600 mm lang
doppelte Bohrreihe



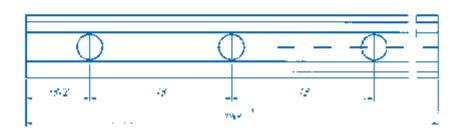
- Oben aufgeführte Unterstützungen sind als Tragschienen, Welle montiert auf Unterstützung, nach Vorgabe lieferbar

	Abme	ssunge	n in mm	1									Gewicht
Artikel-Nr.	∛d	Α	h	E1	E2	E3	W	∛d1	Ød2	t1	t2	T	(kg)
WUFD-20	20	15	52	8	7,5	22	8,3	6,6	11	8.5	8.5	75	1,00
WUFD-25	25	20	62	10	10,0	26	10,0	9,0	15	14.0	11.0	75	1,30
WUFD-30	30	25	72	12	12,5	30	11,0	11,0	18	15.3	13.5	100	1,90
WUFD-40	40	30	88	12	15,0	38	15,0	14,0	20	17.5	16.0	100	2,70
WUFD-50	50	35	105	15	17,5	45	19,0	15,5	24	21.5	18.5	100	3,70

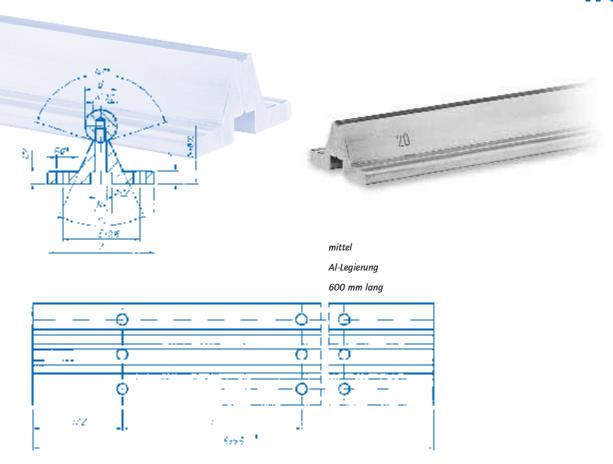

⁻ Zugehörige Präzisionsstahlwellen Kapitel V


niedrig Al-Legierung 600 mm lang

	Abmes	sungen ii	n mm								Gewicht
Artikel-Nr.	<i>⊠d</i>	h	Н1	Α	A1	W	М	Ød1	e	T3	(kg)
WUN-12	12	14,5	3	11	5,5	5,4	M4	4,5	15,5	75	0,44
WUN-16	16	18	3	14	7,0	7,0	M5	5,5	16,0	75	0,56
WUN-20	20	22	3	17	8,5	8,1	М6	6,6	20,0	75	0,81
WUN-25	25	26	3	21	10,5	10,3	М8	9,0	25,0	75	1,06
WUN-30	30	30	3	23	11,5	11,0	М10	11,0	30,0	100	1,25
WUN-40	40	39	4	30	15,0	15,0	M12	13,5	38,0	100	2,16
WUN-50	50	46	5	35	17,5	19,0	M14	15,5	45,0	100	2,94


⁻ Zugehörige Präzisionsstahlwellen Kapitel V

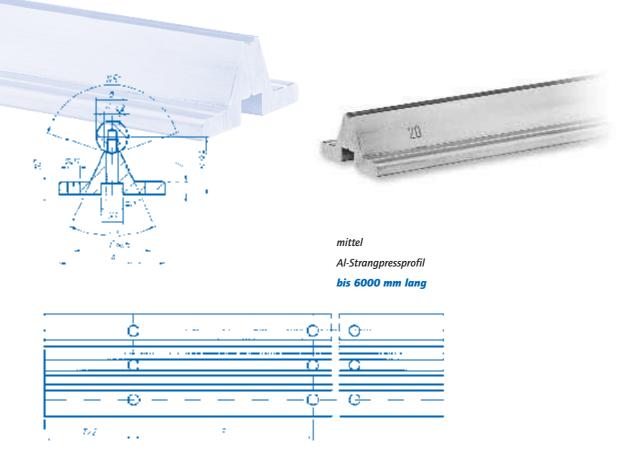
niedrig Stahl 1200 mm lang



	Abmessi	ıngen in n	nm							Gewicht
Artikel-Nr.	∴"d	h	A	A1	W	М	:3d1	e	T3	(kg)
WUS-12	12	14	12	6,0	6,0	M4	4,5	15,5	75	1,5
WUS-16	16	18	14	7,0	7,0	M5	5,5	16,0	75	2,4
WUS-20	20	22	17	8,5	8,3	М6	6,6	20,0	75	3,7
WUS-25	25	26	21	10,5	10,8	M8	9,0	25,0	75	5,6
WUS-30	30	30	23	11,5	11,0	M10	11,0	30,0	100	9,0
WUS-40	40	39	30	15,0	15,0	M12	13,5	38,0	100	13,3

⁻ Sonderausführung 600mm möglich

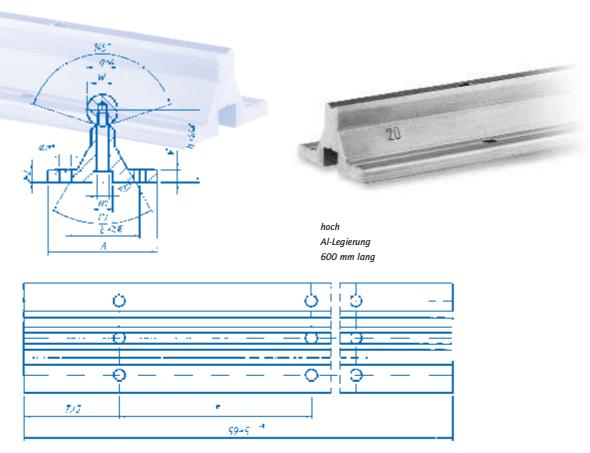
⁻ Zugehörige Präzisionsstahlwellen Kapitel V



Oben aufgeführte Unterstützungen sind als Tragschienen,
 Welle montiert auf Unterstützung, nach Vorgabe lieferbar

	Abm	essunge	en in mn	1										Gewicht
Artikel-Nr.	⊘d	A	h	V	N1	N2	∴*d1	<i></i> ∂d2	W	(°)	E	T1	T2	(kg)
WUM-12	12	40	22	5	8,0	5,0	4,5	4,5	5,8	50	29	75	120	0,52
WUM-16	16	45	26	5	9,5	6,0	5,5	5,5	7,0	50	33	100	150	0,64
WUM-20	20	52	32	6	11,0	6,5	6,6	6,6	8,3	50	37	100	150	0,90
WUM-25	25	57	36	6	14,0	8,5	6,6	9,0	10,8	50	42	120	200	1,08
WUM-30	30	69	42	7	17,0	10,5	9,0	11,0	11,0	50	51	150	200	1,43
WUM-40	40	73	50	8	17,0	10,5	9,0	11,0	15,0	50	55	200	300	1,81
WUM-50	50	84	60	9	19,0	12,5	11,0	13,0	19,0	46	63	200	300	2,45
WUM-60	60	94	68 ^{±0,01}	10	19,0	12,5	11,0	13,0	25,0	46	72	300	-	3,16
WUM-80	80	116	86 ^{±0,01}	12	19,0	12,5	13,0	13,0	34,0	46	92	300	-	4,86

- Zugehörige Präzisionsstahlwellen Kapitel V



Oben aufgeführte Unterstützungen sind als Tragschienen,
 Welle montiert auf Unterstützung, nach Vorgabe lieferbar

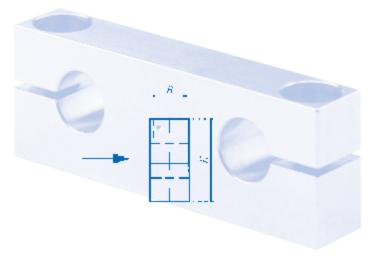
	Abme	ssunge	n in m	ım										Gewicht
Artikel-Nr.	∴³d	A	h	V	N1	N2	:Zd1	<i>∛d2</i>	W	(°)	E	T1	T2	(kg)/m
WUV-16	16	52	30	6	9,5	6,0	5,5	5,5	7,0	50	37	100	150	1,7
WUV-20	20	52	32	6	11,0	6,5	6,6	6,6	8,3	50	37	100	150	1,7
WUV-25	25	57	36	6	14,0	8,5	6,6	9,0	10,8	50	42	120	200	1,8
WUV-30	30	69	42	8	17,0	10,5	9,0	11,0	11,0	50	51	150	200	2,4
WUV-40	40	85	60	11	17,0	10,5	9,0	11,0	15,0	50	65	200	300	3,2
WUV-50	50	85	65	11	19,0	12,5	11,0	13,0	19,0	46	65	200	300	3,2

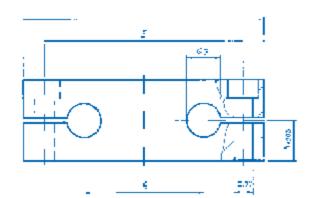
⁻ Zugehörige Präzisionsstahlwellen Kapitel V

Oben aufgeführte Unterstützungen sind als Tragschienen,
 Welle montiert auf Unterstützung, nach Vorgabe lieferbar

	Abm	essung	gen in	mm										Gewicht
Artikel-Nr.	ød	Α	h	V	N1	N2	ød1	ød2	W	(°)	E	T1	T2	(kg)
WUH-12	12	43	28	5	8,0	5,0	4,5	4,5	9	60	29	75	120	0,64
WUH-16	16	48	30	5	10	6,0	5,5	5,5	10	60	33	100	150	0,74
WUH-20	20	56	38	6	12	9,5	6,6	6,6	11	60	37	100	150	1,00
WUH-25	25	60	42	6	15	11,5	6,6	9,0	14	60	42	120	200	1,20
WUH-30	30	74	53	8	17,0	11,5	9,0	11,0	14	60	51	150	200	1,80
WUH-40	40	78	60	8	19	13	9,0	11,0	18	60	55	200	300	2,10

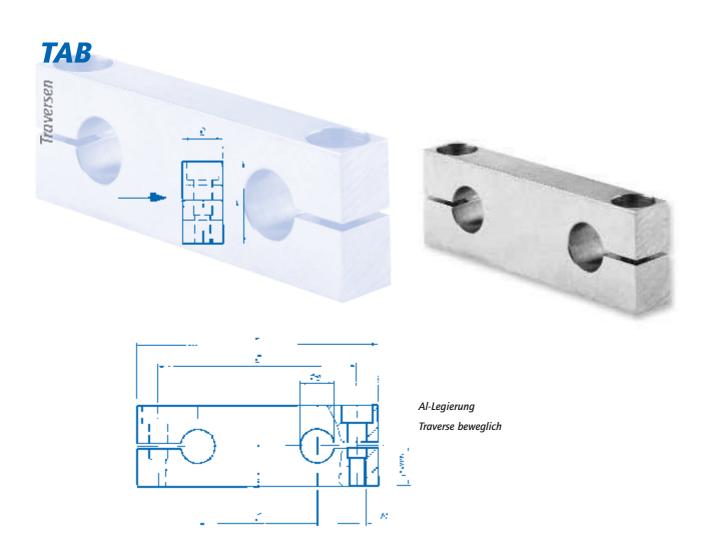
- Zugehörige Präzisionsstahlwellen Kapitel V




Komplett montiert Wellen in verschiedenen Materialien

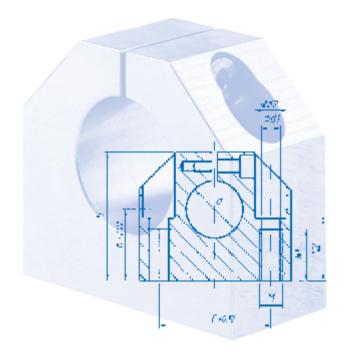
- Die Tragschienen werden komplett montiert angeliefert.
- Die Abmessungen entnehmen Sie bitte den Maßzeichnungen der jeweiligen Unterstützung.
- Die Längen sind beliebig wählbar, bei Überschreitung der Wellen-Herstellungslänge werden die Tragschienen verzapft und in Teillängen angeliefert.
- Das Maß der ersten Bohrung ist T/2. Wir behalten uns vor, das Maß aus technischen Gründen zu vermitteln..
- Die lieferbaren Tragschienen setzen sich wie folgt zusammen.

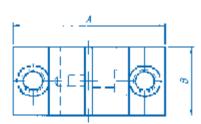
Wellen 🖑	TSF mit	Schraube	TSFD mit	Schraube	TSM mit	Schraube	TSV mit	Schraube	TSH mit	Schraube
12					WUM	M4x17			WUH	M4x20
16					WUM	M5x20	WUV	M5x20	WUH	M5x25
20	WUF	M6x45	WUFD	M6x45	WUM	M6x25	WUV	M6x25	WUH	M6x30
25	WUF	M8x50	WUFD	M8x50	WUM	M8x30	WUV	M8x30	WUH	M8x35
30	WUF	M10x60	WUFD	M10x60	WUM	M10x35	WUV	M10x35	WUH	M10x45
40	WUF	M10x75	WUFD	M10x70	WUM	M10x40	WUV	M10x40	WUH	M10x50
50	WUF	M12x90	WUFD	M12x90	WUM	M12x45	WUV	M12x45		



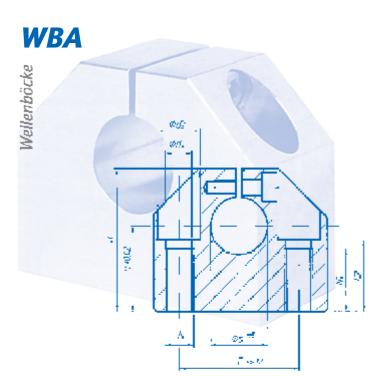
Al-Legierung Traverse festgeschraubt

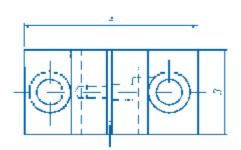
	Abmessu	ngen in mm							Gewicht
Artikel-Nr.	Ød	Α	В	Н	h	E	∴"d1	R	(kg)
TAA-08	8	65	12	23	12,5	52	5,5	32	0,04
TAA-12	12	85	14	32	18,0	70	6,6	42	0,09
TAA-16	16	100	18	36	20,0	82	9,0	54	0,14
TAA-20	20	130	20	46	25,0	108	11,0	72	0,25
TAA-25	25	160	25	56	30,0	132	13,5	88	0,47
TAA-30	30	180	25	64	35,0	150	13,5	96	0,62
TAA-40	40	230	30	80	44,0	190	17,5	122	1,15


- Wellenaufnahmeabstand gleich Maß "R" bei QAG und QAG-OP, Kapitel III
- Zugehörige Präzisionsstahlwellen Kapitel V


	Abmes	ssungen in n	nm						Gewicht
Artile-Nr.	∴∛d	Α	В	Н	h	E	М	R	(kg)
TAB-08	8	65	12	22	11	52	M5	32	0,04
TAB-12	12	85	14	28	14	70	М6	42	0,07
TAB-16	16	100	18	32	16	82	M8	54	0,13
TAB-20	20	130	20	42	21	108	M10	72	0,22
TAB-25	25	160	25	52	26	132	M12	88	0,44
TAB-30	30	180	25	58	29	150	M12	96	0,56
TAB-40	40	230	30	72	36	190	M16	122	1,00

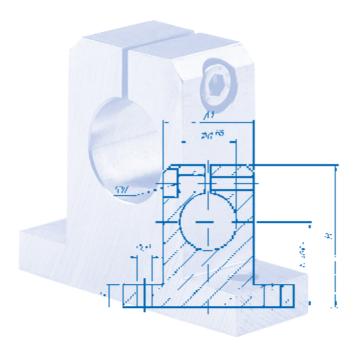
- Wellenaufnahmeabstand gleich Maß "R" bei QAG und QAG-OP, Kapitel III
- Zugehörige Präzisionsstahlwellen Kapitel V

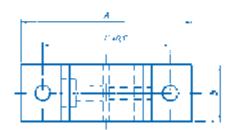



Kompakt Al-Legierung

	Abme	ssungen	in mm									Gewicht
Artikel-Nr.	∴*d	A	В	Н	h	E	∴"d1	⊘d2	М	N1	N2	(kg)
WBC-06	6	32	16	27	15	22	4,2	8	M5	11	13	0,03
WBC-08	8	32	16	27	16	22	4,2	8	M5	11	13	0,03
WBC-10	10	40	18	33	18	27	5,2	10	М6	13	16	0,05
WBC-12	12	40	18	33	19	27	5,2	10	М6	13	16	0,05
WBC-14	14	45	20	38	20	32	5,2	10	М6	13	18	0,07
WBC-16	16	45	20	38	22	32	5,2	10	М6	13	18	0,07
WBC-20	20	53	24	45	25	39	6,8	11	M8	18	22	0,12
WBC-25	25	62	28	54	31	44	8,6	15	M10	22	26	0,17
WBC-30	30	67	30	60	34	49	8,6	15	M10	22	29	0,22
WBC-40	40	87	40	76	42	66	10,3	18	M12	26	38	0,48
WBC-50	50	103	50	92	50	80	14,25	20	M16	34	46	0,82

⁻ Zugehörige Präzisionsstahlwellen Kapitel V

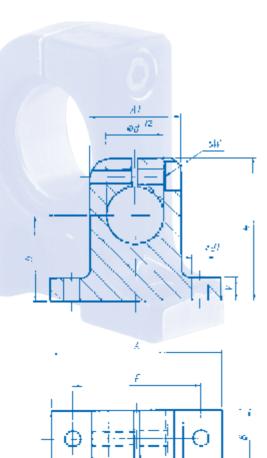



Wellenbock Al-Legierung

Abmessungen in mm													
Artikel-Nr.	₿ď	Α	В	H	h	E	∴"d1	∴*d2	М	N1	N2	(kg)	
WBA-08	8	32	18	28	15	22	3,3	6	M4	9	13,0	0,04	
WBA-12	12	43	20	35	20	30	5,2	10	М6	13	16,5	0,10	
WBA-16	16	53	24	42	25	38	6,8	11	М8	18	21,0	0,15	
WBA-20	20	60	30 _{-0,6}	50 _{-0,6}	30	42	8,6	15	M10	22	25,0	0,23	
WBA-25	25	78	38	60	35	56	10,3	18	M12	26	30,0	0,41	
WBA-30	30	87	40 _{-0,6}	70 _{-0,6}	40	64	10,3	18	M12	26	34,0	0,53	
WBA-40	40	108	48	90	50	82	14,25	20	M16	34	44,0	0,99	
WR4-50	50	132	5.8	105	60	100	175	26	M20	43	49.0	1 25	

⁻ Zugehörige Präzisionsstahlwellen Kapitel V

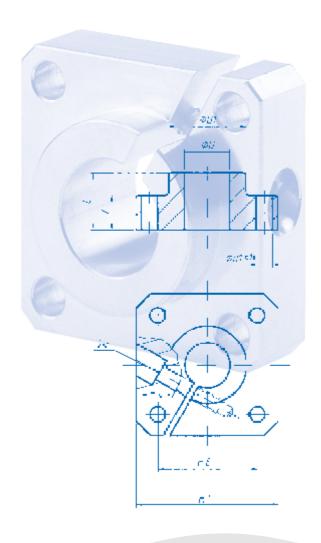
Standard - Wellenbock Al-Legierung


	Abme	ssungen i	n mm								Gewicht
Artikel-Nr.	₽d	Н	h	Α	A1	В	E	∴"d1	V	SW	(kg)
WBAS-08	8	27	15	32	16	10	25	4,5	5,0	3	0,01
WBAS-12	12	35	20	42	20	12	32	5,5	5,5	3	0,02
WBAS-16	16	42	25	50	26	16	40	5,5	6,5	3	0,03
WBAS-20	20	50	30	60	32	20	45	5,5	8,0	4	0,07
WBAS-25	25	58	35	74	38	25	60	6,6	9,0	5	0,14
WBAS-30	30	68	40	84	45	28	68	9,0	10,0	6	0,20
WBAS-40	40	86	50	108	56	32	86	11,0	12,0	8	0,48
WBAS-50	50	100	60	130	80	40	108	11,0	14,0	8	1,90
WBAS-60	60	124	75	160	100	48	132	13,5	15,0	8	3,60

⁻ Zugehörige Präzisionsstahlwellen Kapitel V

⁻ Maß h1, A, A1, B, V Toleranz DIN 1686 - GTB 15

Wellenböcke

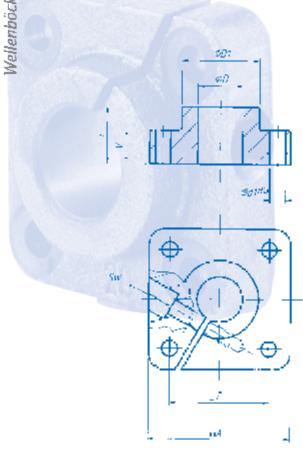

Standard - Wellenbock Stahl

	Abmessungen in mm													
Artikel-Nr.	∴d	Н	h	Α	A1	В	E	∛d1	V	SW	(kg)			
WBS-08	8	27	15 ±0,010	32	16	10	25 ±0,15	4,5	5,2	2,5	0,03			
WBS-12	12	35	20 ^{±0,010}	42	20	12	32 ^{±0,15}	5,5	5,5	3,0	0,06			
WBS-16	16	42	25 ±0,010	50	26	16	40 ^{±0,15}	5,5	6,5	3,0	0,11			
WBS-20	20	50	30 ^{±0,010}	60	32	20	45 ±0,15	5,5	8,0	3,0	0,21			
WBS-25	25	58	35 ±0,010	74	38	25	60 ^{±0,15}	6,6	9,0	4,0	0,35			
WBS-30	30	68	40 ^{±0,010}	84	45	28	68 ^{±0,20}	9,0	10,0	5,0	0,52			
WBS-40	40	86	50 ^{±0,010}	108	56	32	86 ±0,20	11,0	12,0	6,0	0,92			
WBS-50	50	100	60 ^{±0,015}	130	80	40	108 ±0,20	11,0	14,0	6,0	1,90			
WBS-60	60	124	75 ±0,015	160	100	48	132 ±0,25	13,5	15,0	8,0	3,60			
WBS-80	80	160	100 ±0,015	200	130	60	170 ±0,50	17.5	22.0	10.0	7.30			

⁻ Zugehörige Präzisionsstahlwellen Kapitel V

⁻ Maß H1, A, A1, B, V Toleranz DIN 1686 - GTB 15

Flansch - Wellenbock Al-Legierung


	Abmessun	Abmessungen in mm												
Artikle-Nr.	Ød.	Α	L	: ĕ D1	E	: ∛d1	V	SW	(kg)					
FWBA-12	12	40	20	23,5	30 ^{±0,12}	5,5	12	3	0,06					
FWBA-16	16	50	20	27,5	35 ±0,12	5,5	12	3	0,08					
FWBA-20	20	50	23	33,5	38 ±0,15	6,6	14	4	0,10					
FWBA-25	25	60	25	42,0	42 ±0,15	6,6	16	5	0,15					
FWBA-30	30	70	30	49,5	54 ±0,25	9,0	19	6	0,30					
FWBA-40	40	100	40	65,0	68 ±0,25	11,0	26	8	0,70					
FWBA-50	50	100	50	75,0	75 ^{±0,25}	11,0	36	8	1,20					

⁻ Zugehörige Präzisionsstahlwellen Kapitel V

⁻ Maß A, L, D, V Toleranz DIN 1686 - GTB 15

FWBG

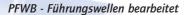
Flansch - Wellenbock Grauguss

	Abmessung	Abmessungen in mm											
Artikel-Nr.	₿d	Α	L	." D1	E	∴"d1	V	SW	(kg)				
FWBG-12	12	42	20	23,5	30 ±0,12	5,5	12	3	0,15				
FWBG-16	16	50	20	27,5	35 ±0,12	5,5	12	3	0,21				
FWBG-20	20	54	23	33,5	38 ±0,15	6,6	14	4	0,28				
FWBG-25	25	60	25	42,0	42 ±0,15	6,6	16	5	0,41				
FWBG-30	30	76	30	49,5	54 ±0,25	9,0	19	6	0,75				
FWBG-40	40	96	40	65,0	68 ±0,25	11,0	26	8	1,65				
FWBG-50	50	106	50	75,0	75 ^{±0,25}	11,0	36	8	2,60				

⁻ Zugehörige Präzisionsstahlwellen Kapitel V

⁻ Maß A, L, D, V Toleranz DIN 1686 - GTB 15

olera	пzтегаег	H15 bis	H5 für II	nendurc	hmesser	(Bohrung	en)				(Maße	in mm)
lennmo	aßbereich	H15	H14	H13	H12	H11	H10	Н9	Н8	H7	Н6	H5
İber	6	+0,580	+0,360	+0,220	+0,150	+0,090	+0,058	+0,036	+0,022	+0,015	+0,009	+0,006
is	10	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ber	10	+0,700	+0,430	+0,270	+0,180	+0,110	+0,070	+0,043	+0,027	+0,018	+0,011	+0,008
is	14	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	14	+0,700	+0,430	+0,270	+0,180	+0,110	+0,070	+0,043	+0,027	+0,018	+0,011	+0,008
Bis	18	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	18	+0,840	+0,520	+0,330	+0,210	+0,130	+0,084	+0,052	+0,033	+0,021	+0,013	+0,009
Bis	24	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	24	+0,840	+0,520	+0,330	+0,210	+0,130	+0,084	+0,052	+0,033	+0,021	+0,013	+0,009
Bis	30	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	30	+1.000	+0,620	+0,390	+0,250	+0,160	+0,100	+0,062	+0,039	+0,025	+0,016	+0,01
Bis	40	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	40	+1,000	+0,620	+0,390	+0,250	+0,160	+0,100	+0,062	+0,039	+0,025	+0,016	+0,011
Bis	50	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	50	+1,200	+0,740	+0,460	+0,300	+0,190	+0,120	+0,074	+0,046	+0,030	+0,019	+0,013
Bis	65	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	65	+1,200	+0,740	+0,460	+0,300	+0,190	+0,120	+0,074	+0,046	+0,030	+0,019	+0,013
Bis	80	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über	80	+1,400	+0,870	+0,540	+0,350	+0,220	+0,140	+0,087	+0,054	+0,035	+0,022	+0,015
Bis	100	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000	0,000	0,000
Über	100	+1,400	+0,870	+0,540	+0,350	+0,220	+0,140	+0,087	+0,054	+0,035	+0,022	+0,015
Bis	120	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
über	120	+1,600	+1,000	+0,630	+0,400	+0,250	+0,160	+0,100	+0,063	+0,040	+0.025	+0,018
Bis	140	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über		+1,600		+0,630	•		+0.160	•	+0,063			+0,018
ober Bis	140 160	0,000	+1,000 0,000		+0,400	+0,250	-,	+0,100		+0,040 0,000	+0,025 0,000	
		,	•	0,000	0,000	0,000	0,000	0,000	0,000	•	•	0,000
Über	160	+1,600	+1,000	+0,630	+0,400	+0,250	+0,160	+0,100	+0,063	+0,040	+0,025	+0,018
Bis	180	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Über Bis	180 200	+1,850	+1,150 0,000	+0,720	+0,460	+0,290 0,000	+0,185 0,000	+0,115 0,000	+0,072	+0,046	+0,029	+0,020
			h5 für Aı								(Маве	•
Nennna	ßbereich	h15	h14	h13	h12	h11	h10	h9	h8	h7	h6	h!
Nennna Über	Bbereich 6	h15 0,000	h14 0,000	h13 0,000	h12 0,000	h11 0,000	0,000	0,000	0,000	0,000	h6 0,000	h !
Nennna Über Bis	ßbereich	h15	h14	h13	h12	h11					h6	h !
Nennna Über Bis Über	Bbereich 6 10 10	h15 0,000 -0,580 0,000	h14 0,000 -0,360 0,000	h13 0,000 -0,220 0,000	h12 0,000 -0,150 0,000	h11 0,000	0,000 -0,058 0,000	0,000 -0,036 0,000	0,000 -0,022 0,000	0,000 -0,015 0,000	h6 0,000 -0,009 0,000	0,000 -0,000 0,000
Nennna Über Bis Über	Bbereich 6 10	h15 0,000 -0,580	h14 0,000 -0,360	h13 0,000 -0,220	h12 0,000 -0,150	h11 0,000 -0,090	0,000 -0,058	0,000 -0,036	0,000 -0,022	0,000 -0,015	h6 0,000 -0,009	0,000 -0,000 0,000
Nennna Über Bis Über Bis	Bbereich 6 10 10	h15 0,000 -0,580 0,000	h14 0,000 -0,360 0,000	h13 0,000 -0,220 0,000	h12 0,000 -0,150 0,000	h11 0,000 -0,090 0,000	0,000 -0,058 0,000	0,000 -0,036 0,000	0,000 -0,022 0,000	0,000 -0,015 0,000	h6 0,000 -0,009 0,000	0,000 -0,000 0,000 -0,000
Nennna Über Bis Über Bis Über	18 bereich 6 10 10 14	h15 0,000 -0,580 0,000 -0,700	h14 0,000 -0,360 0,000 -0,430	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270	h12 0,000 -0,150 0,000 -0,180	h11 0,000 -0,090 0,000 -0,110	0,000 -0,058 0,000 -0,070	0,000 -0,036 0,000 -0,043	0,000 -0,022 0,000 -0,027	0,000 -0,015 0,000 -0,018	h6 0,000 -0,009 0,000 -0,011	0,000 -0,000 0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis	18bereich 6 10 10 14 14	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000	0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000	0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis	18 bereich 6 10 10 14 14 14	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270	<i>h12</i> 0,000 -0,150 0,000 -0,180 0,000 -0,180	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110	0,000 -0,058 0,000 -0,070 0,000 -0,070	0,000 -0,036 0,000 -0,043 0,000 -0,043	0,000 -0,022 0,000 -0,027 0,000 -0,027	0,000 -0,015 0,000 -0,018 0,000 -0,018	60,000 -0,009 0,000 -0,011 0,000 -0,011	0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis	6 10 10 14 14 18 18	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000 -0,013 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis	6 10 10 14 14 18 18 24	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -0,840	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330	h12 0,000 -0,150 0,000 -0,180 0,000 -0,210 0,000 -0,210	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000 -0,013 0,000 -0,013	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis	6 10 10 14 14 18 18 24 24	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000 -0,013 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über	6 10 10 14 14 18 18 24 24 30	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -0,840	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330	h12 0,000 -0,150 0,000 -0,180 0,000 -0,210 0,000 -0,210	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,084	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000 -0,013 0,000 -0,013	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis	6 10 10 14 14 18 18 24 24 30 30	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -0,840 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,084 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000 -0,013 0,000 -0,013	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,084 0,000 -0,100	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000 -0,025	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,084 0,000 -0,100 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000 -0,025 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,390	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,084 0,000 -0,100 0,000 -0,100	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039 0,000 -0,039	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000 -0,025 0,000 -0,025	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016 0,000 -0,016	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,001 -0,001
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,000 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,390 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,084 0,000 -0,100 0,000 -0,100 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,001 -0,001 -0,000 -0,001
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,000 0,000 -1,200	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,390 0,000 -0,390 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,100 0,000 -0,120	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,001 -0,001 -0,001 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,000 0,000 -1,200 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,390 0,000 -0,460 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,100 0,000 -0,120 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,001 -0,001 -0,001 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,300 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,190 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,030 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,011 -0,001 -0,001 -0,001 -0,000 -0,010 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,200 0,000 -1,400	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,460 0,000 -0,540	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,300 0,000 -0,350	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,190 0,000 -0,220	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000 -0,087	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022	0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 100	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,300 0,000 -0,350 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,190 0,000 -0,220 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000 -0,087 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,010 -0,000 -0,010 -0,000 -0,010 -0,000 -0,010 -0,000 -0,010 -0,010 -0,000 -0,010 -0,000 -0,010 -0,000 -0,010 -0,000 -0,010 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 50 65 65 80 80 100 120	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -0,870	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,190 0,000 -0,220 0,000 -0,220	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000 -0,087	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022	0,000 -0,
Nennna Öber Bis Öber Bis Öber Bis Öber Bis Öber Bis Öber Bis Öber Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 120 120	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400 0,000 -1,400 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -0,870 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,220 0,000 -0,220 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,087 0,000 -0,087 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000	0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 1100 1120 1120 1140	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400 0,000 -1,400 0,000 -1,400 0,000 -1,600	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -0,870 0,000 -1,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350 0,000 -0,350 0,000 -0,400	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,220 0,000 -0,220 0,000 -0,250	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140 0,000 -0,160	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000 -0,087 0,000 -0,087 0,000 -0,100	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054 0,000 -0,063	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035 0,000 -0,040	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000 -0,025	0,000 -0,
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 1100 1120 1120 1140	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400 0,000 -1,400 0,000 -1,600 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -0,870 0,000 -1,000 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,630 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350 0,000 -0,350 0,000 -0,400 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,220 0,000 -0,220 0,000 -0,250 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140 0,000 -0,160 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,087 0,000 -0,087 0,000 -0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054 0,000 -0,063 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035 0,000 -0,035 0,000 -0,040 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000 -0,025 0,000	0,000 -0,000
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 1100 1120 1140 1140 1160	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400 0,000 -1,400 0,000 -1,600 0,000 -1,600	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -0,870 0,000 -1,000 -1,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,630 0,000 -0,630	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350 0,000 -0,350 0,000 -0,400 0,000 -0,400	h11 0,000 -0,090 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,220 0,000 -0,220 0,000 -0,250 0,000 -0,250	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140 0,000 -0,160	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000 -0,087 0,000 -0,087 0,000 -0,100	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054 0,000 -0,063 0,000 -0,063	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035 0,000 -0,040 0,000 -0,040	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000 -0,025 0,000 -0,025	0,000 -0,
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 1100 1120 1140 1140 1160 1160	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400 0,000 -1,600 0,000 -1,600 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -1,000 0,000 -1,000 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,630 0,000 -0,630 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350 0,000 -0,350 0,000 -0,400 0,000 -0,400 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,220 0,000 -0,220 0,000 -0,250 0,000 -0,250 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140 0,000 -0,160 0,000 -0,160 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000 -0,087 0,000 -0,087 0,000 -0,100 0,000 -0,100 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054 0,000 -0,063 0,000 -0,063 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035 0,000 -0,040 0,000 -0,040 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000 -0,025 0,000 -0,025 0,000	0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,010 -0,
Nennna Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis Über Bis	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 1100 1120 1140 1140 1160 1160 1180	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400 0,000 -1,600 0,000 -1,600 0,000 -1,600	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -1,000 0,000 -1,000 -1,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,630 0,000 -0,630 0,000 -0,630	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350 0,000 -0,400 0,000 -0,400 0,000 -0,400 0,000 -0,400	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,220 0,000 -0,220 0,000 -0,250 0,000 -0,250 0,000 -0,250	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140 0,000 -0,160 0,000 -0,160 0,000 -0,160	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,087 0,000 -0,087 0,000 -0,100 0,000 -0,100 0,000 -0,100	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054 0,000 -0,063 0,000 -0,063 0,000 -0,063	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035 0,000 -0,040 0,000 -0,040 0,000 -0,040	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000 -0,025 0,000 -0,025 0,000 -0,025	0,000 -0,012 -0,012 -0,012 -0,012 -0,012 -0,012 -0,012 -0,012 -0,013 -0,010 -0,
	8bereich 6 10 10 14 14 18 18 24 24 30 30 40 40 50 65 65 80 80 100 1100 1120 1140 1140 1160 1160	h15 0,000 -0,580 0,000 -0,700 0,000 -0,700 0,000 -0,840 0,000 -1,000 0,000 -1,200 0,000 -1,200 0,000 -1,400 0,000 -1,400 0,000 -1,600 0,000 -1,600 0,000	h14 0,000 -0,360 0,000 -0,430 0,000 -0,430 0,000 -0,520 0,000 -0,520 0,000 -0,620 0,000 -0,620 0,000 -0,740 0,000 -0,740 0,000 -0,870 0,000 -1,000 0,000 -1,000 0,000	h13 0,000 -0,220 0,000 -0,270 0,000 -0,270 0,000 -0,330 0,000 -0,330 0,000 -0,390 0,000 -0,460 0,000 -0,460 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,540 0,000 -0,630 0,000 -0,630 0,000	h12 0,000 -0,150 0,000 -0,180 0,000 -0,180 0,000 -0,210 0,000 -0,210 0,000 -0,250 0,000 -0,250 0,000 -0,300 0,000 -0,350 0,000 -0,350 0,000 -0,350 0,000 -0,400 0,000 -0,400 0,000	h11 0,000 -0,090 0,000 -0,110 0,000 -0,110 0,000 -0,130 0,000 -0,130 0,000 -0,160 0,000 -0,160 0,000 -0,190 0,000 -0,220 0,000 -0,220 0,000 -0,250 0,000 -0,250 0,000	0,000 -0,058 0,000 -0,070 0,000 -0,070 0,000 -0,084 0,000 -0,100 0,000 -0,120 0,000 -0,120 0,000 -0,140 0,000 -0,140 0,000 -0,160 0,000 -0,160 0,000	0,000 -0,036 0,000 -0,043 0,000 -0,043 0,000 -0,052 0,000 -0,052 0,000 -0,062 0,000 -0,062 0,000 -0,074 0,000 -0,074 0,000 -0,087 0,000 -0,087 0,000 -0,100 0,000 -0,100 0,000	0,000 -0,022 0,000 -0,027 0,000 -0,027 0,000 -0,033 0,000 -0,039 0,000 -0,039 0,000 -0,046 0,000 -0,046 0,000 -0,054 0,000 -0,054 0,000 -0,063 0,000 -0,063 0,000	0,000 -0,015 0,000 -0,018 0,000 -0,018 0,000 -0,021 0,000 -0,025 0,000 -0,025 0,000 -0,030 0,000 -0,035 0,000 -0,035 0,000 -0,040 0,000 -0,040 0,000	h6 0,000 -0,009 0,000 -0,011 0,000 -0,013 0,000 -0,016 0,000 -0,016 0,000 -0,019 0,000 -0,019 0,000 -0,022 0,000 -0,025 0,000 -0,025 0,000	in mm) hs 0,000 -0,006 0,000 -0,000 0,000 -0,000 0,000 -0,01



Präzisionsführungswellen in verschiedenen Werkstoffen und Ausführungen ergeben zusammen mit Linearkugellagern, Wellenböcken, Wellenunterstützungen und Lineargehäuse - Einheiten eine bewährte und wirtschaftliche Linearführung. Präzisionsführungswellen sind induktivgehärtet. Diese Behandlung sichert an der Oberfläche / Lauffläche eine gleichmäßige Härte in radialer und axialer Richtung. Durch dieses Härteverfahren wird ein effektiver Härtebereich des Außenmantels erzielt und macht problemlose Bearbeitung im weichen Kern der Welle möglich. Präzisionsführungswellen werden spitzenlos geschliffen und unterliegen strengster Prüfung von Rundheit, Zylinderform, Geradheit und Rauheit der Oberfläche. Wählen Sie entsprechend Ihren Anforderungen die geeignete Präzisions - Führungswelle.

Auswahlkriterium für Führungswellen/Hohlwellen

Ihre besondere Anforderung	Unsere Typen	Ausführung + Werkstoff	Härte der Oberfläche	Toleranz des Außen-⊋	Lieferbare ∅	Auf Seite
- Sehr hohe Oberflächenhärte - Alle Bearbeitungs- beispiele auf Seite 77 können gefertigt werden - Keine Korrosions- beständigkeit	wv	Vollwellen induktivgehärtet und geschliffen Cf 53 (1.1213)	62 +/- 2 HRC	h6	3 - 120 mm Ø	82
- Außendurchmesser gehärtet und 5-10µ hartverchromt - Alle Bearbeitungs- beispiele auf Seite 77 können gefertigt werden - Korrosionsbeständig	WV 1	Maßhartverchromte Vollwellen induktivgehärtet und geschliffen Cf 53 Cr (1.1213)	900-1100 HV	h7	3 - 120 mm Ø	82
- Hohe Oberflächenhärte - Alle Bearbeitungs- beispiele auf Seite 77 können gefertigt werden - Korrosionsbeständig	WRS 1	Rostfreie Vollwellen induktivgehärtet und geschliffen X46Cr13 (1.4034)	53 +/- 2 HRC	h6	5 - 60 mm Ø	83
- Hohe Oberflächenhärte - Alle Bearbeitungs- beispiele auf Seite 77 können gefertigt werden - Korrosions- und säurebeständig	WRS 2	Rostfreie und säurebeständige Vollwellen induktivgehärtet und geschliffen X90CrMoV18 (1.4112)	54 +/- 2 HRC	h6	5 - 60 mm Ø	83
- Sehr hohe Oberflächenhärte - Alle Bearbeitungs- beispiele auf Seite 77 können gefertigt werden - Geringes Gewicht - Kabel und Medien- führung möglich - Keine Korrosions- beständigkeit	WH	Hohlwellen induktivgehärtet und geschliffen 100Cr6 (1.3505)	62 +/- 2 HRC	h6	12 - 100 mm	83

Nutzen Sie unseren Bearbeitungsservice senken Sie Ihre Kosten durch einbaufertige Führungswellen nach Ihren Spezifikationen

In der Bearbeitung von induktivgehärteten Wellen sind wir Spezialisten.

Wir fertigen kurzfristig nach Ihren Angaben auf modernen CNC-Maschinen komplett bearbeitete Bauteile, zum Beispiel Wellen mit Zapfen und Fasen, mit Radialoder Axialgewindebohrungen, sowie fertigmontierte Einheiten mit Wellenunterstützungen oder Wellenböcken.

Bearbeitungsbeispiele

Welle induktivgehärtet Zapfen weich

—

Gesamte Welle induktivgehärtet, im Bereich des Einstichs ebenfalls hart

Welle induktivgehärtet Zapfen weich -ф-

Welle induktivgehärtet im Bereich der Bohrung ebenfalls hart

Welle induktivgehärtet Zapfen weich

Welle induktivgehärtet

Welle induktivgehärtet Zapfen weich **---**

Welle induktivgehärtet

Welle induktivgehärtet Zapfen weich

Welle induktivgehärtet

Welle induktivgehärtet

Wir fertigen nach Ihren Angaben / Zeichnungen mit kurzen Lieferzeiten!

WV Vollwellen, induktivgehärtet, HRC 62±2, geschliffen, Werkstoff CF53 (1.1213) WV 1 Vollwellen induktivgehärtet, maßhartverchromt Chromschicht 5-10µ, HV 900-1100, geschliffen, Werkstoff CF 53 Cr (1.1213)

Wellendurch- messer ご	Gewicht je Meter	Wellen- kurzzeichen WV	Herstelllängen max.	Einhärtetiefe max.	Standard- toleranz ISO h6
mm	kg		mm	mm	μ m
5	0,154	WV - 5	3900	0,8	0 -8
6	0,222	WV - 6	6000	0,8	0 -9
8	0,395	WV - 8	6200	1	0 -9
10	0,617	WV - 10	6200	1	0 -11
12	0,888	WV - 12	6200	1,3	0 -11
14	1,208	WV - 14	6200	1,3	0 -11
15	1,387	WV - 15	6100	1,3	0 -11
16	1,578	WV - 16	7200	1,6	0 -11
18	1,998	WV - 18	6200	1,6	0 -13
20	2,466	WV - 20	7200	1,6	0 -13
22	2,984	WV - 22	4200	1,8	0 -13
24	3,551	WV - 24	6000	1,8	0 -13
25	3,853	WV - 25	7800	1,8	0 -13
30	5,549	WV - 30	7800	2	0 -16
32	6,313	WV - 32	7800	2	0 -16
35	7,553	WV - 35	7800	2,5	0 -16
36	7,99	WV - 36	7800	2,5	0 -16
40	9,865	WV - 40	7800	2,5	0 -19
45	12,48	WV - 45	7800	2,5	0 -19
50	15,41	WV - 50	7800	3	0 -19
60	22,2	WV - 60	7800	3	0 -19
70	30,21	WV - 70	7800	3	0 -19
80	39,46	WV - 80	7800	3	0 -19
100	61,65	WV - 100	7800	3,3	0 -22
		WV 1			
5	0,154	WV 1 - 5	2000	0,8	0 -12
6	0,222	WV 1 - 6	3900	0,8	0 -15
8	0,395	WV 1 - 8	3900	1	0 -15
10	0,617	WV 1 - 10	6200	1	0 -18
12	0,888	WV 1 - 12	6200	1,3	0 -18
14	1,208	WV 1 - 14	6200	1,3	0 -18
15	1,387	WV 1 - 15	6100	1,3	0 -18
16	1,578	WV 1 - 16	7200	1,6	0 -18
20	2,466	WV 1 - 20	7200	1,6	0 -21
24	3,551	WV 1 - 24	6000	1,8	0 -21
25	3,853	WV 1 - 25	7800	1,8	0 -21
30	5,549	WV 1 - 30	7800	2	0 -21
32	6,313	WV 1 - 32	6000	2	0 -21
35	7,553	WV 1 - 35	6000	2,5	0 -25
40	9,865	WV 1 - 40	7800	2,5	0 -25
50	15,41	WV 1 - 50	7800	3	0 -25
60	22,2	WV 1 - 60	7800	3	0 -25
80	39,46	WV 1 - 80	7800	3	0 -30

WRS 1 Rostfreie Vollwellen, induktivgehärtet, HRC 51 - 55, geschliffen, Werkstoff X-40Cr13 (1.4034)

WRS 2 Rostfreie- und säurebeständige Vollwellen, induktivgehärtet, HRC 52 - 56, Werkstoff X-90CrMoV18 (1.4112)

Hohlwellen induktivgehärtet, HRC 62±2, geschliffen,

Werkstoff C60 o.100Cr 6 (1.0601)

WH

Wellendurch- messer ∅ mm	Innendurch- messer* mm	Gewicht je Meter kg	Wellen- kurzzeichen WRS 1	Herstelllängen max. mm	Einhärtetiefe Rht (max) DIN 6773 mm	Standard toleranz ISO h6 µm
	***************************************					-
5		0,154	WRS 1 - 5	1000	0,7	0 -8
6		0,222	WRS 1 - 6	3900	0,7	0 -9
8		0,395	WRS 1 - 8	3900	0,9	0 -9
10		0,617	WRS 1 - 10	3900	1,1	0 -11
12		0,888	WRS 1 - 12	4900	1,3	0 -11
14		1,208	WRS 1 - 14	4900	1,5	0 -11
15		1,387	WRS 1 - 15	4900	1,6	0 -11
16		1,578	WRS 1 - 16	4900	1,6	0 -11
20		2,466	WRS 1 - 20	4900	1,8	0 -13
25		3,853	WRS 1 - 25	4900	2	0 -13
30		5,549	WRS 1 - 30	4900	2,4	0 -13
40		9,865	WRS 1 - 40	4900	2,6	0 -13
50		15,41	WRS 1 - 50	4900	2,9	0 -13
60		22,2	WRS 1 - 60	4900	3	0 -16
			WRS 2			
3		0,055	WRS 2 - 3	200	durchgehärtet	0 -5
4		0,098	WRS 2 - 4	200	durchgehärtet	0 -5
5		0,154	WRS 2 - 5	3800	0,7	0 -8
6		0,222	WRS 2 - 6	3800	0,7	0 -9
8		0,395	WRS 2 - 8	3800	0,9	0 -9
10		0,617	WRS 2 - 10	3800	1,1	0 -11
12		0,888	WRS 2 - 12	7800	1,3	0 -11
14		1,208	WRS 2 - 14	7800	1,5	0 -11
15		1,387	WRS 2 - 15	7800	1,6	0 -11
16		1,578	WRS 2 - 16	7800	1,6	0 -11
20		2,466	WRS 2 - 20	7800	1,8	0 -13
25		3,853	WRS 2 - 25	7800	2	0 -13
30		5,549	WRS 2 - 30	7800	2,4	0 -13
40		9,865	WRS 2 - 40	7800	2,6	0 -13
50		15,41	WRS 2 - 50	7800	2,9	0 -13
60		22,2	WRS 2 - 60	7800	3	0 -16
			WH			
12	4	0,79	WH - 12	6000	1,3	0 -11
16	7	1,28	WH - 16	6000	1,6	0 -11
20	14	1,25	WH - 20	6000	1,8	0 -13
25	15,6	2,35	WH - 25	6000	2	0 -13
30	18,3	3,5	WH - 30	6000	2,4	0 -13
40	28	4,99	WH - 40	6000	2,6	0 -16
50	29,7	9,91	WH - 50	6000	2,9	0 -16
60	36	14,2	WH - 60	6000	3	0 -19
80	57	19,43	WH - 80	6000	3,2	0 -19

Andere Durchmesser und Materialien auf Anfrage

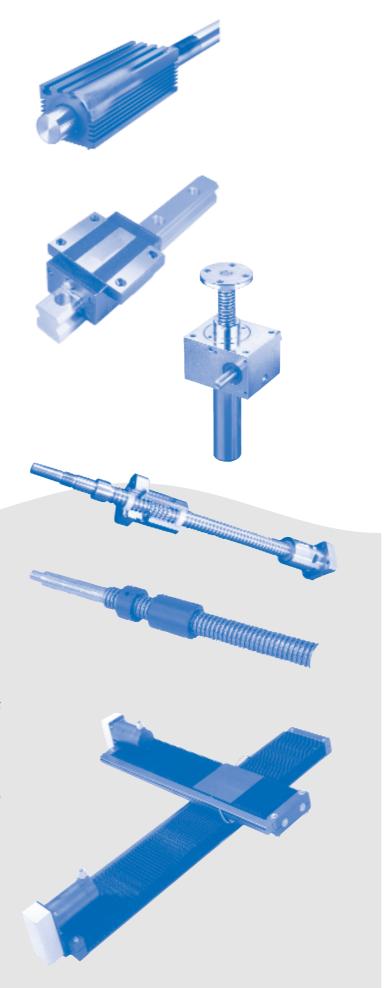
^{*}Standardwert. Wir behalten uns vor im Einzelfall andere Innendurchmesser zu liefern.

Linear - Mehrkoordinaten- und Direktantriebe, luftgelagert

Linear - Profilschienenführungen

Linear - Schienenführung mit Rollenumlaufführung - Schwerlastbereich

Linear - Schneckenhubgetriebe 2,5 KN bis 500 KN Traglast


Linear - Kugelrollspindeln in geschliffener oder gerollter Ausführung mit Einzel-, Doppel- oder Flanschmutter

Linear - Trapezgewindespindeln mit Muttern aus Kunststoff, Messing oder Stahl / Edelstahl

Linear - Elektromechanische Hubzylinder bis Standardausfahrlänge 1200 mm und maximaler Belastung 10.000 N. 12/24/36 VDC und 220 VAC

Linear - Imperial Programm beinhaltet alle gängigen Linearlager und Zubehör im Inch (Zoll) -Bereich

Linear - Komplettsysteme mit Gleichstrom, - Schritt - oder Servo - Motoren und Steuerungen

